Yuan Tian , Feng Yang , Meisam Zargar , Ying-Gao Liu , Mo-Xian Chen , Fu-Yuan Zhu
{"title":"Integration of structural study and machine learning to elucidate the RNA-SFs interaction atlas in eukaryotic cells","authors":"Yuan Tian , Feng Yang , Meisam Zargar , Ying-Gao Liu , Mo-Xian Chen , Fu-Yuan Zhu","doi":"10.1016/j.biotechadv.2025.108608","DOIUrl":null,"url":null,"abstract":"<div><div>Alternative splicing (AS) occupies a central position in plant growth and development, stress response, and animal growth and disease processes. Mutations in SF (splicing factor) trigger aberrant AS activities that disrupt these fine biological processes. Although cryo electron microscopy (cryoEM) technology has successfully revealed the fine structure of multiple spliceosomes, the dynamic and complex network of RNA-SFs remains to be fully resolved. This review summarizes the binding patterns of RNA and SFs through machine learning's powerful computational capabilities, the deep structural analysis using cryoEM, and experimental validation of RNA protein binding. Connect RNA protein interaction experiments, high-resolution imaging capabilities of cryoEM, and powerful analytical capabilities of machine learning to jointly construct a detailed RNA-SFs interaction map, forming a powerful toolkit. These knowledge help us better understand the complexity and working mechanisms of biological systems. This article not only has profound significance in revealing the molecular mechanisms of diseases and developing multi-target efficient drugs but also provides in-depth insights into molecular breeding and plant resistance enhancement.</div></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"83 ","pages":"Article 108608"},"PeriodicalIF":12.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975025000941","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alternative splicing (AS) occupies a central position in plant growth and development, stress response, and animal growth and disease processes. Mutations in SF (splicing factor) trigger aberrant AS activities that disrupt these fine biological processes. Although cryo electron microscopy (cryoEM) technology has successfully revealed the fine structure of multiple spliceosomes, the dynamic and complex network of RNA-SFs remains to be fully resolved. This review summarizes the binding patterns of RNA and SFs through machine learning's powerful computational capabilities, the deep structural analysis using cryoEM, and experimental validation of RNA protein binding. Connect RNA protein interaction experiments, high-resolution imaging capabilities of cryoEM, and powerful analytical capabilities of machine learning to jointly construct a detailed RNA-SFs interaction map, forming a powerful toolkit. These knowledge help us better understand the complexity and working mechanisms of biological systems. This article not only has profound significance in revealing the molecular mechanisms of diseases and developing multi-target efficient drugs but also provides in-depth insights into molecular breeding and plant resistance enhancement.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.