WTAP-induced m6A Methylation of Atoh8 Promotes Cell Proliferation and Fibrosis in Diabetic Nephropathy.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Suyu Wang, Henglu Zhang, Bingru Fei, Mei Zhang
{"title":"WTAP-induced m<sup>6</sup>A Methylation of Atoh8 Promotes Cell Proliferation and Fibrosis in Diabetic Nephropathy.","authors":"Suyu Wang, Henglu Zhang, Bingru Fei, Mei Zhang","doi":"10.1007/s12013-025-01778-3","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is a common diabetic complication, which increases morbidity of end-stage renal failure. N6-methyladenosine (m6A) modification has been reported in association with multiple physiological processes, however, its role in diabetic nephropathy is still poorly understood. Here, we found that the levels of m6A modification were up-regulated in both high-glucose-cultured mouse mesangial cells and the renal tissues from db/db mice. The key methyltransferase WT1 associated protein (WTAP) was primarily responsible for the elevated m6A modification. Moreover, WTAP knockdown significantly inhibited the proliferation and fibrosis of mouse mesangial cells (MMCs). Mechanistically, using the combination analysis of MeRIP-Seq and RNA-Seq, we revealed that Atoh8 was a downstream target of WTAP-induced m6A modification. We first revealed that Atoh8 was lowly expressed in renal tissues of DN model mice and HG-induced mesangial cells. WTAP reduced Atoh8 expression by inhibiting Atoh8 mRNA stability. Overexpression of Atoh8 restrained the proliferation and fibrosis of mesangial cells. This study provides novel insights into the role of m6A modification in DN and suggests that WTAP and Atoh8 could serve as potential therapeutic targets for this condition.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01778-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic nephropathy (DN) is a common diabetic complication, which increases morbidity of end-stage renal failure. N6-methyladenosine (m6A) modification has been reported in association with multiple physiological processes, however, its role in diabetic nephropathy is still poorly understood. Here, we found that the levels of m6A modification were up-regulated in both high-glucose-cultured mouse mesangial cells and the renal tissues from db/db mice. The key methyltransferase WT1 associated protein (WTAP) was primarily responsible for the elevated m6A modification. Moreover, WTAP knockdown significantly inhibited the proliferation and fibrosis of mouse mesangial cells (MMCs). Mechanistically, using the combination analysis of MeRIP-Seq and RNA-Seq, we revealed that Atoh8 was a downstream target of WTAP-induced m6A modification. We first revealed that Atoh8 was lowly expressed in renal tissues of DN model mice and HG-induced mesangial cells. WTAP reduced Atoh8 expression by inhibiting Atoh8 mRNA stability. Overexpression of Atoh8 restrained the proliferation and fibrosis of mesangial cells. This study provides novel insights into the role of m6A modification in DN and suggests that WTAP and Atoh8 could serve as potential therapeutic targets for this condition.

wtap诱导的Atoh8的m6A甲基化促进糖尿病肾病的细胞增殖和纤维化。
糖尿病肾病是一种常见的糖尿病并发症,它增加了终末期肾功能衰竭的发病率。n6 -甲基腺苷(m6A)修饰已被报道与多种生理过程相关,然而,其在糖尿病肾病中的作用仍知之甚少。在这里,我们发现m6A修饰水平在高糖培养的小鼠系膜细胞和db/db小鼠的肾组织中均上调。关键甲基转移酶WT1相关蛋白(WTAP)是m6A修饰升高的主要原因。此外,WTAP敲低可显著抑制小鼠系膜细胞(MMCs)的增殖和纤维化。从机制上讲,通过MeRIP-Seq和RNA-Seq的组合分析,我们发现Atoh8是wtap诱导m6A修饰的下游靶点。我们首先发现Atoh8在DN模型小鼠肾组织和hg诱导的系膜细胞中低表达。WTAP通过抑制Atoh8 mRNA的稳定性降低Atoh8的表达。过表达Atoh8抑制系膜细胞的增殖和纤维化。这项研究为m6A修饰在DN中的作用提供了新的见解,并表明WTAP和Atoh8可以作为这种疾病的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信