{"title":"WTAP-induced m<sup>6</sup>A Methylation of Atoh8 Promotes Cell Proliferation and Fibrosis in Diabetic Nephropathy.","authors":"Suyu Wang, Henglu Zhang, Bingru Fei, Mei Zhang","doi":"10.1007/s12013-025-01778-3","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is a common diabetic complication, which increases morbidity of end-stage renal failure. N6-methyladenosine (m6A) modification has been reported in association with multiple physiological processes, however, its role in diabetic nephropathy is still poorly understood. Here, we found that the levels of m6A modification were up-regulated in both high-glucose-cultured mouse mesangial cells and the renal tissues from db/db mice. The key methyltransferase WT1 associated protein (WTAP) was primarily responsible for the elevated m6A modification. Moreover, WTAP knockdown significantly inhibited the proliferation and fibrosis of mouse mesangial cells (MMCs). Mechanistically, using the combination analysis of MeRIP-Seq and RNA-Seq, we revealed that Atoh8 was a downstream target of WTAP-induced m6A modification. We first revealed that Atoh8 was lowly expressed in renal tissues of DN model mice and HG-induced mesangial cells. WTAP reduced Atoh8 expression by inhibiting Atoh8 mRNA stability. Overexpression of Atoh8 restrained the proliferation and fibrosis of mesangial cells. This study provides novel insights into the role of m6A modification in DN and suggests that WTAP and Atoh8 could serve as potential therapeutic targets for this condition.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01778-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic nephropathy (DN) is a common diabetic complication, which increases morbidity of end-stage renal failure. N6-methyladenosine (m6A) modification has been reported in association with multiple physiological processes, however, its role in diabetic nephropathy is still poorly understood. Here, we found that the levels of m6A modification were up-regulated in both high-glucose-cultured mouse mesangial cells and the renal tissues from db/db mice. The key methyltransferase WT1 associated protein (WTAP) was primarily responsible for the elevated m6A modification. Moreover, WTAP knockdown significantly inhibited the proliferation and fibrosis of mouse mesangial cells (MMCs). Mechanistically, using the combination analysis of MeRIP-Seq and RNA-Seq, we revealed that Atoh8 was a downstream target of WTAP-induced m6A modification. We first revealed that Atoh8 was lowly expressed in renal tissues of DN model mice and HG-induced mesangial cells. WTAP reduced Atoh8 expression by inhibiting Atoh8 mRNA stability. Overexpression of Atoh8 restrained the proliferation and fibrosis of mesangial cells. This study provides novel insights into the role of m6A modification in DN and suggests that WTAP and Atoh8 could serve as potential therapeutic targets for this condition.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.