Amir Ayati, Hugh G A Burton, Stijn De Baerdemacker
{"title":"Spin-Symmetry Projected Constrained Unrestricted Hartree-Fock.","authors":"Amir Ayati, Hugh G A Burton, Stijn De Baerdemacker","doi":"10.1021/acs.jctc.5c00068","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce an electronic structure approach for spin-symmetry breaking and restoration at the mean-field level. The spin-projected constrained-unrestricted Hartree-Fock (SPcUHF) method restores the broken spin symmetry inherent in spin-constrained-UHF determinants by employing a nonorthogonal configuration interaction (NOCI) projection method. This method includes all possible configurations in spin space compatible with a Clebsch-Gordon recoupling scheme in a NOCI calculation. The tunable one-pair-at-a-time characteristics of the symmetry-breaking process in c-UHF allow us to reduce the computational costs of full projection. SPcUHF is tested on 4-, 6-, and 8-electron systems that exhibit dominant static and/or dynamic correlations.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"5409-5424"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00068","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce an electronic structure approach for spin-symmetry breaking and restoration at the mean-field level. The spin-projected constrained-unrestricted Hartree-Fock (SPcUHF) method restores the broken spin symmetry inherent in spin-constrained-UHF determinants by employing a nonorthogonal configuration interaction (NOCI) projection method. This method includes all possible configurations in spin space compatible with a Clebsch-Gordon recoupling scheme in a NOCI calculation. The tunable one-pair-at-a-time characteristics of the symmetry-breaking process in c-UHF allow us to reduce the computational costs of full projection. SPcUHF is tested on 4-, 6-, and 8-electron systems that exhibit dominant static and/or dynamic correlations.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.