{"title":"Mechanics Mediated Semi-Convertible Hydrogel Enabled Sustained Drug Release","authors":"Hongyue Jiang, Xing Lu, Tianshi Bu, Xuhao Yang, Xiang Li, Xue Ren, Xinyi Xu, Chengcheng Fan, Jingxuan He, Xiaopeng Zhang, Wenlong Song, Wenjing Tian, Bin Xu","doi":"10.1002/adhm.202500845","DOIUrl":null,"url":null,"abstract":"<p>The dynamic mechanic environment surrounding the wound may retard wound healing, and even lead to an exacerbation of inflammation and scar. How to actively promote wound healing under a dynamic mechanical environment during human motion is still a long-standing challenge. Therefore, a mechanics mediated semi-convertible hydrogel (M<sub>ech</sub>SCH) loaded with drug is proposed in this study employing the synergistic interaction between mechanics mediated supramolecular non-covalent networks and polyvinyl alcohol/Gelatin polymer networks for enhancing dynamic wound healing. The formed M<sub>ech</sub>SCH exhibits a partial gel-sol transition even under a shear stress of ≈9.04 Pa that is satisfied with most tissues or organs' stress. The sustained release of encapsulated drugs would be efficiently compared with the mechanics of non-sensitive polyvinyl alcohol/Gelatin hydrogel. The loaded platelet-derived growth factor (PDGF) of the M<sub>ech</sub>SCH exhibited a rapid onset of therapeutic effect in a mice dorsal full-thickness dermal wound model, which demonstrated sustaining drug release through mechanics of skin tension at the wound site, along with alleviating the inflammation and promoting rapid vascular regeneration. This mechanics mediated semi-convertible hydrogel presents potential clinical applications for the dynamic management of chronic wounds.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"14 18","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adhm.202500845","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic mechanic environment surrounding the wound may retard wound healing, and even lead to an exacerbation of inflammation and scar. How to actively promote wound healing under a dynamic mechanical environment during human motion is still a long-standing challenge. Therefore, a mechanics mediated semi-convertible hydrogel (MechSCH) loaded with drug is proposed in this study employing the synergistic interaction between mechanics mediated supramolecular non-covalent networks and polyvinyl alcohol/Gelatin polymer networks for enhancing dynamic wound healing. The formed MechSCH exhibits a partial gel-sol transition even under a shear stress of ≈9.04 Pa that is satisfied with most tissues or organs' stress. The sustained release of encapsulated drugs would be efficiently compared with the mechanics of non-sensitive polyvinyl alcohol/Gelatin hydrogel. The loaded platelet-derived growth factor (PDGF) of the MechSCH exhibited a rapid onset of therapeutic effect in a mice dorsal full-thickness dermal wound model, which demonstrated sustaining drug release through mechanics of skin tension at the wound site, along with alleviating the inflammation and promoting rapid vascular regeneration. This mechanics mediated semi-convertible hydrogel presents potential clinical applications for the dynamic management of chronic wounds.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.