{"title":"Systematic investigation of the structure-property relationship of substituted <i>p</i>-alkoxy-azothiophenes.","authors":"Conrad Averdunk, Hermann A Wegner","doi":"10.1039/d5ob00506j","DOIUrl":null,"url":null,"abstract":"<p><p>Differently substituted <i>p</i>-alkoxy azothiophenes with increasing alkoxy chains were systematically investigated in terms of their structure-property relationships. In particular, it was observed that increasing the length of the alkoxy chain had an unusual effect on the melting point, which did not follow the expected odd-even effect. It was also shown that changing the length of the alkoxy chain did not significantly affect the thermal half-life, a finding that disagrees with results reported in other studies. These observations provide valuable insights into structure-property relationships with important implications for the design and development of azobenzenes as molecular materials for various applications. Furthermore, each <i>p</i>-alkoxy azothiophene was investigated in terms of neat solid-state photoisomerisation or photoinduced liquefaction, which is a critical parameter for application as a molecular solar thermal phase-change (MOST-PCM) energy storage system.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ob00506j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Differently substituted p-alkoxy azothiophenes with increasing alkoxy chains were systematically investigated in terms of their structure-property relationships. In particular, it was observed that increasing the length of the alkoxy chain had an unusual effect on the melting point, which did not follow the expected odd-even effect. It was also shown that changing the length of the alkoxy chain did not significantly affect the thermal half-life, a finding that disagrees with results reported in other studies. These observations provide valuable insights into structure-property relationships with important implications for the design and development of azobenzenes as molecular materials for various applications. Furthermore, each p-alkoxy azothiophene was investigated in terms of neat solid-state photoisomerisation or photoinduced liquefaction, which is a critical parameter for application as a molecular solar thermal phase-change (MOST-PCM) energy storage system.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.