Armin Amirsadeghi , Shahriar Mahdavi , Paula Jager , Marleen Kamperman , Julien Es Sayed
{"title":"3D-Printable Granular Hydrogel Composed of Hyaluronic Acid-Chitosan Hybrid Polyelectrolyte Complex Microgels","authors":"Armin Amirsadeghi , Shahriar Mahdavi , Paula Jager , Marleen Kamperman , Julien Es Sayed","doi":"10.1021/acs.biomac.5c00228","DOIUrl":null,"url":null,"abstract":"<div><div>When it comes to 3D printing of hydrogels, optimizing rheological properties is crucial to ensure (i) a smooth flow of the ink through the nozzle during printing and (ii) structural integrity postprinting. Granular hydrogels offer excellent printability due to their intrinsic yield-stress properties; however, they typically lack postprinting integrity in aqueous environments. To address this limitation, a novel approach is proposed to integrate the yield-stress behavior of granular hydrogels with polyelectrolyte complexes, which exhibit tunable mechanical properties and structural integrity in aqueous media. In this approach, hybrid microgels composed of chemically co-cross-linked hyaluronic acid–chitosan polyelectrolytes are prepared in a high-salt medium to shield electrostatic interactions and then jammed to form a printable granular hydrogel. By reducing the salt concentration below the critical threshold for electrostatic association, intra- and interparticle electrostatic interactions are activated, causing both the microgels and the granular hydrogel to shrink. This process yields a hydrogel with tunable stiffness, packing density, and dimensions. Overall, this strategy paves the way for the design of 3D hydrogel constructs with dynamic properties.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (137KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 6","pages":"Pages 3641-3650"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725002399","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
When it comes to 3D printing of hydrogels, optimizing rheological properties is crucial to ensure (i) a smooth flow of the ink through the nozzle during printing and (ii) structural integrity postprinting. Granular hydrogels offer excellent printability due to their intrinsic yield-stress properties; however, they typically lack postprinting integrity in aqueous environments. To address this limitation, a novel approach is proposed to integrate the yield-stress behavior of granular hydrogels with polyelectrolyte complexes, which exhibit tunable mechanical properties and structural integrity in aqueous media. In this approach, hybrid microgels composed of chemically co-cross-linked hyaluronic acid–chitosan polyelectrolytes are prepared in a high-salt medium to shield electrostatic interactions and then jammed to form a printable granular hydrogel. By reducing the salt concentration below the critical threshold for electrostatic association, intra- and interparticle electrostatic interactions are activated, causing both the microgels and the granular hydrogel to shrink. This process yields a hydrogel with tunable stiffness, packing density, and dimensions. Overall, this strategy paves the way for the design of 3D hydrogel constructs with dynamic properties.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.