Porous Silica Nanoparticle Entrapped Small Gd(III) and Mn(II) Complexes as MRI Contrast Agents.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Geetanjali Deka, Riya Mallik, Ismile Sk, Chandan Mukherjee
{"title":"Porous Silica Nanoparticle Entrapped Small Gd(III) and Mn(II) Complexes as MRI Contrast Agents.","authors":"Geetanjali Deka, Riya Mallik, Ismile Sk, Chandan Mukherjee","doi":"10.1021/acsabm.5c00747","DOIUrl":null,"url":null,"abstract":"<p><p>Among the <i>in vivo</i> imaging techniques, magnetic resonance imaging (MRI) provides soft-tissue images with high spatial resolution without using any harmful ionizing radiation. Prior to <i>in vivo</i> imaging, the administration of a bolus injection of paramagnetic species, coined as contrast agents (CAs), has become almost routine to facilitate conspicuous imaging in a relatively short measurement period. The contrast agents are mainly small Gd(III)-complexes of macrocyclic and acyclic organic ligands with polar pendant arms. Nonetheless, reports on some adverse effects due to the accumulation of bare Gd(III) ions in the human body from the used gadolinium-based contrast agents necessitate extensive investigations on Mn(II)-complexes to engender potential alternatives. While thermodynamically stable and kinetically inert Mn-complexes with inner-sphere water molecule(s) have been developed and tested as CAs, the enhancement in the relaxivity value beyond 3.5 mM<sup>-1</sup> s<sup>-1</sup> has been intriguing. This review discloses the recent strategies for incorporating paramagnetic small Gd(III) and Mn(II) complexes within the porous nanosystems, the physicochemical properties, and stability and contrast efficiency improvement after confinement. The generation of \"smart\" and environmentally responsive contrasting probes by incorporating appropriate functional groups onto the surface of the robust nanosystems is also presented herein.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Among the in vivo imaging techniques, magnetic resonance imaging (MRI) provides soft-tissue images with high spatial resolution without using any harmful ionizing radiation. Prior to in vivo imaging, the administration of a bolus injection of paramagnetic species, coined as contrast agents (CAs), has become almost routine to facilitate conspicuous imaging in a relatively short measurement period. The contrast agents are mainly small Gd(III)-complexes of macrocyclic and acyclic organic ligands with polar pendant arms. Nonetheless, reports on some adverse effects due to the accumulation of bare Gd(III) ions in the human body from the used gadolinium-based contrast agents necessitate extensive investigations on Mn(II)-complexes to engender potential alternatives. While thermodynamically stable and kinetically inert Mn-complexes with inner-sphere water molecule(s) have been developed and tested as CAs, the enhancement in the relaxivity value beyond 3.5 mM-1 s-1 has been intriguing. This review discloses the recent strategies for incorporating paramagnetic small Gd(III) and Mn(II) complexes within the porous nanosystems, the physicochemical properties, and stability and contrast efficiency improvement after confinement. The generation of "smart" and environmentally responsive contrasting probes by incorporating appropriate functional groups onto the surface of the robust nanosystems is also presented herein.

多孔二氧化硅纳米颗粒包裹小Gd(III)和Mn(II)配合物作为MRI造影剂。
在体内成像技术中,磁共振成像(MRI)提供了高空间分辨率的软组织图像,而不使用任何有害的电离辐射。在体内成像之前,为了在相对较短的测量时间内实现明显的成像,顺磁性物质(即造影剂)的大剂量注射几乎已经成为常规。造影剂主要是具有极性垂臂的大环和无环有机配体的小Gd(III)配合物。尽管如此,关于使用的钆基造影剂会在人体内积累裸Gd(III)离子的一些不良反应的报道,需要对Mn(II)配合物进行广泛的研究,以产生潜在的替代品。虽然已经开发出了具有热力学稳定和动力学惰性的球内水分子的mn配合物,并作为CAs进行了测试,但其弛豫值超过3.5 mM-1 s-1的增强令人感兴趣。本文综述了在多孔纳米体系中加入顺磁性小Gd(III)和Mn(II)配合物的最新策略,限制后的物理化学性质以及稳定性和对比效率的提高。通过将适当的官能团结合到鲁棒纳米系统的表面上,生成“智能”和环境响应性对比探针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信