Hari Raj K, Gnanavel Sadasivam, Vamsi Krishna Dommeti
{"title":"Biocomposites-Coated Biodegradable Materials with Optimized Properties for Orthopedic Implant Biodegradability and Performance: A Comparative Study.","authors":"Hari Raj K, Gnanavel Sadasivam, Vamsi Krishna Dommeti","doi":"10.1021/acsabm.5c00603","DOIUrl":null,"url":null,"abstract":"<p><p>Implant failure continues to be a critical concern in orthopedic interventions, frequently resulting in consequences such as fractures and necessitating revision procedures. Multiple causes, such as mechanical failure, inadequate osteointegration, and corrosion, lead to implant failure over time. This study seeks to resolve these challenges by surface-modifying biodegradable materials such as poly(lactic acid) (PLA) and AZ31 Mg alloy (Mg), integrating novel Biocomposites of titanium-hydroxyapatite (Ti-HA) to improve their efficacy. The altered materials aim to enhance mechanical strength, osteointegration, and regulated deterioration, thus minimizing the likelihood of implant failure. The characterization techniques validated the Biocomposites' adhesion on the implant's surface, mechanical analysis and corrosion resistance were also validated with the help of UTS and electrochemical studies, and <i>in vitro</i> analyses exhibited substantial improvements in material durability and biological compatibility. The result shows that the Biocomposite assistance improved the overall performance of the implant material. This work presents a pioneering strategy to mitigate implant failure by emphasizing these enhancements, facilitating more dependable and efficient solutions in orthopedic implantation, ultimately enhancing patient outcomes and decreasing the necessity for revision procedures. The earlier segment of the research study was confirmed with another Biocomposites (Ti-Zr), representing a continuation of that research work.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Implant failure continues to be a critical concern in orthopedic interventions, frequently resulting in consequences such as fractures and necessitating revision procedures. Multiple causes, such as mechanical failure, inadequate osteointegration, and corrosion, lead to implant failure over time. This study seeks to resolve these challenges by surface-modifying biodegradable materials such as poly(lactic acid) (PLA) and AZ31 Mg alloy (Mg), integrating novel Biocomposites of titanium-hydroxyapatite (Ti-HA) to improve their efficacy. The altered materials aim to enhance mechanical strength, osteointegration, and regulated deterioration, thus minimizing the likelihood of implant failure. The characterization techniques validated the Biocomposites' adhesion on the implant's surface, mechanical analysis and corrosion resistance were also validated with the help of UTS and electrochemical studies, and in vitro analyses exhibited substantial improvements in material durability and biological compatibility. The result shows that the Biocomposite assistance improved the overall performance of the implant material. This work presents a pioneering strategy to mitigate implant failure by emphasizing these enhancements, facilitating more dependable and efficient solutions in orthopedic implantation, ultimately enhancing patient outcomes and decreasing the necessity for revision procedures. The earlier segment of the research study was confirmed with another Biocomposites (Ti-Zr), representing a continuation of that research work.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.