Sparse Array Design Based on the Combination of Improved Binary Grey Wolf Optimisation and Genetic Algorithm

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Weinian Li, Lichun Li, Hongyi Pan, Chaoyue Song, Siyao Tian
{"title":"Sparse Array Design Based on the Combination of Improved Binary Grey Wolf Optimisation and Genetic Algorithm","authors":"Weinian Li,&nbsp;Lichun Li,&nbsp;Hongyi Pan,&nbsp;Chaoyue Song,&nbsp;Siyao Tian","doi":"10.1049/rsn2.70028","DOIUrl":null,"url":null,"abstract":"<p>Traditional adaptive beamforming techniques focus solely on optimising the excitation weights of array elements while neglecting the critical influence of element positioning on beamforming performance. To enhance array degrees of freedom and achieve superior beamforming capabilities, this paper proposes a novel joint optimisation method that simultaneously adjusts both element positions and excitation coefficients, targeting maximum output signal-to-interference-plus-noise ratio (MaxSINR). Under the minimum variance distortionless response (MVDR) framework, we derive and analyse the theoretical relationship between output SINR and array configuration. We reformulate the sparse array design as a binary integer optimisation problem by introducing a position selection vector. The solution is efficiently obtained through our enhanced hybrid algorithm, which combines improved binary grey wolf optimisation with genetic algorithm (IBGWO-GA). Compared with the traditional beamforming method, the proposed algorithm can effectively improve the degree of freedom of the array position and realise interference suppression under underdetermined conditions. The optimal design of sparse linear array and sparse planar array in simulation experiments verifies the effectiveness of the proposed method.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70028","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional adaptive beamforming techniques focus solely on optimising the excitation weights of array elements while neglecting the critical influence of element positioning on beamforming performance. To enhance array degrees of freedom and achieve superior beamforming capabilities, this paper proposes a novel joint optimisation method that simultaneously adjusts both element positions and excitation coefficients, targeting maximum output signal-to-interference-plus-noise ratio (MaxSINR). Under the minimum variance distortionless response (MVDR) framework, we derive and analyse the theoretical relationship between output SINR and array configuration. We reformulate the sparse array design as a binary integer optimisation problem by introducing a position selection vector. The solution is efficiently obtained through our enhanced hybrid algorithm, which combines improved binary grey wolf optimisation with genetic algorithm (IBGWO-GA). Compared with the traditional beamforming method, the proposed algorithm can effectively improve the degree of freedom of the array position and realise interference suppression under underdetermined conditions. The optimal design of sparse linear array and sparse planar array in simulation experiments verifies the effectiveness of the proposed method.

Abstract Image

基于改进二值灰狼优化与遗传算法相结合的稀疏阵列设计
传统的自适应波束形成技术只注重优化阵列单元的激励权重,而忽略了单元定位对波束形成性能的关键影响。为了提高阵列自由度并获得优异的波束形成能力,本文提出了一种新的联合优化方法,该方法同时调整元件位置和激励系数,以最大输出信噪比(MaxSINR)为目标。在最小方差无失真响应(MVDR)框架下,推导并分析了输出信噪比与阵列结构之间的理论关系。我们通过引入位置选择向量将稀疏阵列设计重新表述为二进制整数优化问题。将改进的二值灰狼优化算法与遗传算法(IBGWO-GA)相结合的增强混合算法有效地求解了该问题。与传统波束形成方法相比,该算法能有效提高阵列位置的自由度,实现欠定条件下的干扰抑制。仿真实验验证了稀疏线性阵列和稀疏平面阵列的优化设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信