Protein Biosynthesis and Carbon Catabolite Repression Are Transcriptionally Upregulated in Saccharomyces cerevisiae by Extracellular Fractions From Several Wine Yeast Species
Miguel Mejias-Ortiz, Pilar Morales, Guillermo Juárez, Ramon Gonzalez
{"title":"Protein Biosynthesis and Carbon Catabolite Repression Are Transcriptionally Upregulated in Saccharomyces cerevisiae by Extracellular Fractions From Several Wine Yeast Species","authors":"Miguel Mejias-Ortiz, Pilar Morales, Guillermo Juárez, Ramon Gonzalez","doi":"10.1111/1751-7915.70168","DOIUrl":null,"url":null,"abstract":"<p>Non-<i>Saccharomyces</i> yeast species are increasingly used in winemaking in combination with <i>Saccharomyces cerevisiae</i> to modulate sensory attributes or as processing aids. Consequently, there is academic and practical interest in understanding how different yeast species interact with each other in grape must. Although interactions will depend on the metabolic capabilities of the strains involved, there are other possible interaction mechanisms between wine yeasts. In this work we used extracellular vesicle (EV)-enriched fractions from different non-<i>Saccharomyces</i> species to challenge <i>S. cerevisiae</i> inoculated in synthetic grape must. The results show that the previously described response to EVs of <i>Metschnikowia pulcherrima</i> was not an isolated phenomenon, but that <i>S. cerevisiae</i> responds in a general way to EVs of other yeast species. Meta-analysis of the results points to protein biosynthesis and carbon catabolite repression as general targets; both being stimulated by the interaction, beyond the acclimatisation to the synthetic juice experienced by the control cells. The intensity of the response showed differences between the four species; while the transcriptional response to <i>M. pulcherrima</i> EVs clearly diverges from that to EVs of the other yeast species, which show greater similarity to each other.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 5","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70168","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70168","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Non-Saccharomyces yeast species are increasingly used in winemaking in combination with Saccharomyces cerevisiae to modulate sensory attributes or as processing aids. Consequently, there is academic and practical interest in understanding how different yeast species interact with each other in grape must. Although interactions will depend on the metabolic capabilities of the strains involved, there are other possible interaction mechanisms between wine yeasts. In this work we used extracellular vesicle (EV)-enriched fractions from different non-Saccharomyces species to challenge S. cerevisiae inoculated in synthetic grape must. The results show that the previously described response to EVs of Metschnikowia pulcherrima was not an isolated phenomenon, but that S. cerevisiae responds in a general way to EVs of other yeast species. Meta-analysis of the results points to protein biosynthesis and carbon catabolite repression as general targets; both being stimulated by the interaction, beyond the acclimatisation to the synthetic juice experienced by the control cells. The intensity of the response showed differences between the four species; while the transcriptional response to M. pulcherrima EVs clearly diverges from that to EVs of the other yeast species, which show greater similarity to each other.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes