Shape Optimization of Supercapacitor Electrode to Maximize Charge Storage

IF 2.9 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jiajie Li, Shenggao Zhou, Shengfeng Zhu
{"title":"Shape Optimization of Supercapacitor Electrode to Maximize Charge Storage","authors":"Jiajie Li,&nbsp;Shenggao Zhou,&nbsp;Shengfeng Zhu","doi":"10.1002/nme.70052","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This work proposes a shape optimization approach for electrode morphology to maximize charge storage in supercapacitors. The ionic distributions and electric potential are modeled by the steady-state Poisson–Nernst–Planck system. Shape sensitivity analysis is performed to derive the Eulerian derivative in both volumetric and boundary expressions. An optimal electrode morphology is obtained through gradient flow algorithms. The steady-state Poisson–Nernst–Planck system is efficiently solved by the Gummel fixed-point scheme with finite-element discretization, in which exponential coefficients with large variation are tackled with inverse averaging techniques. Extensive numerical experiments are performed to demonstrate the effectiveness of the proposed optimization model and corresponding numerical methods in enhancing charge storage in supercapacitors. It is expected that the proposed shape optimization approach provides a promising tool in the design of electrode morphology from a perspective of charge storage enhancement.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70052","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a shape optimization approach for electrode morphology to maximize charge storage in supercapacitors. The ionic distributions and electric potential are modeled by the steady-state Poisson–Nernst–Planck system. Shape sensitivity analysis is performed to derive the Eulerian derivative in both volumetric and boundary expressions. An optimal electrode morphology is obtained through gradient flow algorithms. The steady-state Poisson–Nernst–Planck system is efficiently solved by the Gummel fixed-point scheme with finite-element discretization, in which exponential coefficients with large variation are tackled with inverse averaging techniques. Extensive numerical experiments are performed to demonstrate the effectiveness of the proposed optimization model and corresponding numerical methods in enhancing charge storage in supercapacitors. It is expected that the proposed shape optimization approach provides a promising tool in the design of electrode morphology from a perspective of charge storage enhancement.

超级电容器电极形状优化以实现最大电荷存储
这项工作提出了一种电极形态的形状优化方法,以最大限度地提高超级电容器的电荷存储。离子分布和电势由稳态泊松-能-普朗克系统模拟。通过形状敏感性分析,推导出体积表达式和边界表达式的欧拉导数。通过梯度流算法得到最优电极形态。采用Gummel不动点格式进行有限元离散化求解稳态泊松-能-普朗克系统,该格式采用逆平均技术处理变化较大的指数系数。大量的数值实验证明了所提出的优化模型和相应的数值方法在提高超级电容器电荷存储方面的有效性。从增强电荷存储的角度来看,所提出的形状优化方法有望为电极形态设计提供一种有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信