A Systematic Study of Staphylococcus aureus Biofilm Formation on Thiol-Ene Polymers: Toward the Development of Microfluidic Bacterial Biofilm Models

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jéssica Amorim, Emil Rosqvist, Cristina D. Cruz, Markus Haapala, Jouko Peltonen, Päivi Tammela, Tiina M. Sikanen
{"title":"A Systematic Study of Staphylococcus aureus Biofilm Formation on Thiol-Ene Polymers: Toward the Development of Microfluidic Bacterial Biofilm Models","authors":"Jéssica Amorim,&nbsp;Emil Rosqvist,&nbsp;Cristina D. Cruz,&nbsp;Markus Haapala,&nbsp;Jouko Peltonen,&nbsp;Päivi Tammela,&nbsp;Tiina M. Sikanen","doi":"10.1002/admi.202400910","DOIUrl":null,"url":null,"abstract":"<p>Global antimicrobial resistance poses a major threat to human health and is largely driven by bacterial biofilms, which demonstrate significantly greater antibiotic resistance than planktonic bacteria. While most biofilm research targets the development of antibiofilm surfaces, materials that intentionally promote biofilm formation are crucial for creating screening tools to discover new antibiofilm agents. The transition from static to flow-through assay systems is also necessary to increase the methodological readiness of antibiofilm research. This study evaluates the feasibility of an emerging polymer platform, off-stoichiometry thiol-ene (OSTE), in supporting <i>Staphylococcus aureus</i> biofilms. OSTE polymers provide versatile options for rapid prototyping of microfluidic devices, with unique opportunities for on-chip oxygen management. Here, the impacts of OSTE's key materials properties on <i>S. aureus</i> adhesion, biofilm viability, biomass, and metabolic activity are systematically examined in comparison to polystyrene, the current standard in microwell plate-based biofilm assays. Additionally, the composition of the extracellular polymer substances matrix and antimicrobial susceptibility are investigated to determine the most suitable OSTE composition for microfluidic <i>S. aureus</i> biofilm cultures. The results confirm compatibility with <i>S. aureus</i> biofilms, supported by atomic force microscopy analysis of biofilm morphologies under static and microfluidic conditions.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400910","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400910","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Global antimicrobial resistance poses a major threat to human health and is largely driven by bacterial biofilms, which demonstrate significantly greater antibiotic resistance than planktonic bacteria. While most biofilm research targets the development of antibiofilm surfaces, materials that intentionally promote biofilm formation are crucial for creating screening tools to discover new antibiofilm agents. The transition from static to flow-through assay systems is also necessary to increase the methodological readiness of antibiofilm research. This study evaluates the feasibility of an emerging polymer platform, off-stoichiometry thiol-ene (OSTE), in supporting Staphylococcus aureus biofilms. OSTE polymers provide versatile options for rapid prototyping of microfluidic devices, with unique opportunities for on-chip oxygen management. Here, the impacts of OSTE's key materials properties on S. aureus adhesion, biofilm viability, biomass, and metabolic activity are systematically examined in comparison to polystyrene, the current standard in microwell plate-based biofilm assays. Additionally, the composition of the extracellular polymer substances matrix and antimicrobial susceptibility are investigated to determine the most suitable OSTE composition for microfluidic S. aureus biofilm cultures. The results confirm compatibility with S. aureus biofilms, supported by atomic force microscopy analysis of biofilm morphologies under static and microfluidic conditions.

金黄色葡萄球菌在巯基聚合物上形成生物膜的系统研究:迈向微流体细菌生物膜模型的发展
全球抗菌素耐药性对人类健康构成重大威胁,主要是由细菌生物膜驱动的,细菌生物膜比浮游细菌表现出更大的抗生素耐药性。虽然大多数生物膜研究的目标是开发抗生素膜表面,但有意促进生物膜形成的材料对于创建筛选工具以发现新的抗生素膜剂至关重要。从静态到流动分析系统的转变也是必要的,以增加抗生素膜研究的方法学准备。本研究评估了一种新兴聚合物平台,非化学计量硫醇烯(OSTE)在支持金黄色葡萄球菌生物膜中的可行性。OSTE聚合物为微流控设备的快速原型设计提供了多种选择,具有片上氧气管理的独特机会。在这里,OSTE的关键材料性能对金黄色葡萄球菌粘附、生物膜活力、生物量和代谢活性的影响进行了系统的研究,并与聚苯乙烯(目前基于微孔板的生物膜检测标准)进行了比较。此外,研究了细胞外聚合物基质的组成和抗菌敏感性,以确定最适合微流控金黄色葡萄球菌生物膜培养的OSTE组成。结果证实了与金黄色葡萄球菌生物膜的相容性,并得到了静态和微流体条件下生物膜形态的原子力显微镜分析的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信