Digital Module 38: Differential Item Functioning by Multiple Variables Using Moderated Nonlinear Factor Analysis

IF 2.7 4区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Sanford R. Student, Ethan M. McCormick
{"title":"Digital Module 38: Differential Item Functioning by Multiple Variables Using Moderated Nonlinear Factor Analysis","authors":"Sanford R. Student,&nbsp;Ethan M. McCormick","doi":"10.1111/emip.12669","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Module Abstract</h3>\n \n <p>When investigating potential bias in educational test items via differential item functioning (DIF) analysis, researchers have historically been limited to comparing two groups of students at a time. The recent introduction of Moderated Nonlinear Factor Analysis (MNLFA) generalizes Item Response Theory models to extend the assessment of DIF to an arbitrary number of background variables. This facilitates more complex analyses such as DIF across more than two groups (e.g. low/middle/high socioeconomic status), across more than one background variable (e.g. DIF by race/ethnicity and gender), across non-categorical background variables (e.g. DIF by parental income), and more. Framing MNLFA as a generalization of the two-parameter logistic IRT model, we introduce the model with an emphasis on the parameters representing DIF versus impact; describe the current state of the art for estimating MNLFA models; and illustrate the application of MNLFA in a scenario where one wants to test for DIF across two background variables at once.</p>\n </section>\n </div>","PeriodicalId":47345,"journal":{"name":"Educational Measurement-Issues and Practice","volume":"44 2","pages":"39-41"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational Measurement-Issues and Practice","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/emip.12669","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Module Abstract

When investigating potential bias in educational test items via differential item functioning (DIF) analysis, researchers have historically been limited to comparing two groups of students at a time. The recent introduction of Moderated Nonlinear Factor Analysis (MNLFA) generalizes Item Response Theory models to extend the assessment of DIF to an arbitrary number of background variables. This facilitates more complex analyses such as DIF across more than two groups (e.g. low/middle/high socioeconomic status), across more than one background variable (e.g. DIF by race/ethnicity and gender), across non-categorical background variables (e.g. DIF by parental income), and more. Framing MNLFA as a generalization of the two-parameter logistic IRT model, we introduce the model with an emphasis on the parameters representing DIF versus impact; describe the current state of the art for estimating MNLFA models; and illustrate the application of MNLFA in a scenario where one wants to test for DIF across two background variables at once.

数字模块38:微分项目功能的多变量使用有调节的非线性因素分析
当通过差异项目功能(DIF)分析调查教育测试项目的潜在偏见时,研究人员历来仅限于一次比较两组学生。最近引入的有调节非线性因子分析(MNLFA)推广了项目反应理论模型,将DIF的评估扩展到任意数量的背景变量。这有助于进行更复杂的分析,例如跨两个以上群体(例如低/中/高社会经济地位)的DIF,跨一个以上背景变量(例如按种族/民族和性别划分的DIF),跨非分类背景变量(例如按父母收入划分的DIF)等等。将MNLFA框架为双参数logistic IRT模型的推广,我们介绍了该模型,重点介绍了表示DIF与影响的参数;描述估计MNLFA模型的最新技术;并说明MNLFA在一个场景中的应用,在这个场景中,人们想要同时测试两个背景变量的DIF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
15.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信