Stella Marie Timofeev, Katharina Siems, Daniel Wyn Müller, Aisha Saddiqa Ahmed, Alessa Schiele, Kristina Brix, Carolin Luisa Krämer, Franca Arndt, Ralf Kautenburger, Frank Mücklich, Stefan Leuko
{"title":"Stress Response of Aspergillus niger Spores to Copper Surfaces and the Implications for Antifungal Surface Functionalization","authors":"Stella Marie Timofeev, Katharina Siems, Daniel Wyn Müller, Aisha Saddiqa Ahmed, Alessa Schiele, Kristina Brix, Carolin Luisa Krämer, Franca Arndt, Ralf Kautenburger, Frank Mücklich, Stefan Leuko","doi":"10.1002/admi.202400852","DOIUrl":null,"url":null,"abstract":"<p>Fungal contaminations pose a persistent challenge in the fields of healthcare, agriculture, and industry, primarily due to their environmental adaptability and increasing resistance to antifungal agents. In this study <i>Aspergillus niger</i> is utilized as model organism. This work evaluates copper, brass, and steel surfaces functionalized with ultrashort pulsed laser-induced periodic surface structures (USP-DLIP) designed as 3 and 9 µm topographies. Fungal spore viability assays show that 9 µm periodicities on copper surfaces achieve a 99% reduction in spore viability, indicating that increased copper ion release is a key factor in enhanced antifungal effectivity. Scanning electron microscopy (SEM) analysis confirm substantial spore damage, linked to the viability testing and the measured copper ion release by inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ) spectrometry. Interestingly, 9 µm structured steel surfaces reveal a trend toward antifungal activity despite their inert nature. Whereas structured brass surfaces do not show significant improvement in antifungal activity. These findings suggest USP-DLIP structuring on copper and stainless-steel surfaces have considerable potential for antifungal applications, although interactions between surface structures, released ions, and fungal spores are highly complex. Yet, USP-DLIP offers promising advantages for developing advanced antifungal materials.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400852","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400852","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fungal contaminations pose a persistent challenge in the fields of healthcare, agriculture, and industry, primarily due to their environmental adaptability and increasing resistance to antifungal agents. In this study Aspergillus niger is utilized as model organism. This work evaluates copper, brass, and steel surfaces functionalized with ultrashort pulsed laser-induced periodic surface structures (USP-DLIP) designed as 3 and 9 µm topographies. Fungal spore viability assays show that 9 µm periodicities on copper surfaces achieve a 99% reduction in spore viability, indicating that increased copper ion release is a key factor in enhanced antifungal effectivity. Scanning electron microscopy (SEM) analysis confirm substantial spore damage, linked to the viability testing and the measured copper ion release by inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ) spectrometry. Interestingly, 9 µm structured steel surfaces reveal a trend toward antifungal activity despite their inert nature. Whereas structured brass surfaces do not show significant improvement in antifungal activity. These findings suggest USP-DLIP structuring on copper and stainless-steel surfaces have considerable potential for antifungal applications, although interactions between surface structures, released ions, and fungal spores are highly complex. Yet, USP-DLIP offers promising advantages for developing advanced antifungal materials.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.