Fangyuan Zheng, Baoyin Yuan, Youfeng Cai, Huanxin Xiang, Chunmei Tang, Ling Meng, Lei Du, Xiting Zhang, Feng Jiao, Yoshitaka Aoki, Ning Wang, Siyu Ye
{"title":"Machine Learning Tailored Anodes for Efficient Hydrogen Energy Generation in Proton-Conducting Solid Oxide Electrolysis Cells","authors":"Fangyuan Zheng, Baoyin Yuan, Youfeng Cai, Huanxin Xiang, Chunmei Tang, Ling Meng, Lei Du, Xiting Zhang, Feng Jiao, Yoshitaka Aoki, Ning Wang, Siyu Ye","doi":"10.1007/s40820-025-01764-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the global trend of vigorously developing hydrogen energy, proton-conducting solid oxide electrolysis cells (P-SOECs) have attracted significant attention due to their advantages of high efficiency and not requiring precious metals. However, the application of P-SOECs faces challenges, particularly in developing high-performance anodes possessing both high catalytic activity and ionic conductivity. In this study, La<sub>0.9</sub>Ba<sub>0.1</sub>Co<sub>0.7</sub>Ni<sub>0.3</sub>O<sub>3−<i>δ</i></sub> (LBCN9173) and La<sub>0.9</sub>Ca<sub>0.1</sub>Co<sub>0.7</sub>Ni<sub>0.3</sub>O<sub>3−<i>δ</i></sub> (LCCN9173) oxides are tailored as promising anodes by machine learning model, achieving the synergistic enhancement of water oxidation reaction kinetics and proton conduction, which is confirmed by comprehensively analyzing experiment and density functional theory calculation results. Furthermore, the anodic reaction mechanisms for P-SOECs with these anodes are elucidated by analyzing distribution of relaxation time spectra and Gibbs energy of water oxidation reaction, manifesting that the dissociation of H<sub>2</sub>O is facilitated on LBCN9173 anode. As a result, P-SOEC with LBCN9173 anode demonstrates a top-rank current density of 2.45 A cm<sup>−2</sup> at 1.3 V and an extremely low polarization resistance of 0.05 Ω cm<sup>2</sup> at 650 °C. This multi-scale, multi-faceted research approach not only discovered a high-performance anode but also proved the robust framework for the machine learning-assisted design of anodes for P-SOECs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01764-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01764-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In the global trend of vigorously developing hydrogen energy, proton-conducting solid oxide electrolysis cells (P-SOECs) have attracted significant attention due to their advantages of high efficiency and not requiring precious metals. However, the application of P-SOECs faces challenges, particularly in developing high-performance anodes possessing both high catalytic activity and ionic conductivity. In this study, La0.9Ba0.1Co0.7Ni0.3O3−δ (LBCN9173) and La0.9Ca0.1Co0.7Ni0.3O3−δ (LCCN9173) oxides are tailored as promising anodes by machine learning model, achieving the synergistic enhancement of water oxidation reaction kinetics and proton conduction, which is confirmed by comprehensively analyzing experiment and density functional theory calculation results. Furthermore, the anodic reaction mechanisms for P-SOECs with these anodes are elucidated by analyzing distribution of relaxation time spectra and Gibbs energy of water oxidation reaction, manifesting that the dissociation of H2O is facilitated on LBCN9173 anode. As a result, P-SOEC with LBCN9173 anode demonstrates a top-rank current density of 2.45 A cm−2 at 1.3 V and an extremely low polarization resistance of 0.05 Ω cm2 at 650 °C. This multi-scale, multi-faceted research approach not only discovered a high-performance anode but also proved the robust framework for the machine learning-assisted design of anodes for P-SOECs.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.