Barbara Anna Erdelyi, Ramona Gröber, Nudžeim Selimović
{"title":"How large can the light quark Yukawa couplings be?","authors":"Barbara Anna Erdelyi, Ramona Gröber, Nudžeim Selimović","doi":"10.1007/JHEP05(2025)189","DOIUrl":null,"url":null,"abstract":"<p>We investigate models that can induce significant modifications to the couplings of first- and second-generation quarks with Higgs bosons. Specifically, we identify all simplified models featuring two vector-like quark states which can lead to substantial enhancements in these couplings. In addition, these models generate operators in Standard Model Effective Field Theory, both at tree-level and one-loop, that are constrained by electroweak precision and Higgs data. We show how to evade constraints from flavour physics and consider direct searches for vector-like quarks. Ultimately, we demonstrate that viable ultraviolet models can be found with first-generation quark Yukawa couplings enhanced by several hundred times their Standard Model value, while the Higgs couplings to charm (strange) quarks can be increased by factors of a few (few tens). Given the importance of electroweak precision data in constraining these models, we also discuss projections for future measurements at the Tera-<i>Z</i> FCC-ee machine.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)189.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)189","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate models that can induce significant modifications to the couplings of first- and second-generation quarks with Higgs bosons. Specifically, we identify all simplified models featuring two vector-like quark states which can lead to substantial enhancements in these couplings. In addition, these models generate operators in Standard Model Effective Field Theory, both at tree-level and one-loop, that are constrained by electroweak precision and Higgs data. We show how to evade constraints from flavour physics and consider direct searches for vector-like quarks. Ultimately, we demonstrate that viable ultraviolet models can be found with first-generation quark Yukawa couplings enhanced by several hundred times their Standard Model value, while the Higgs couplings to charm (strange) quarks can be increased by factors of a few (few tens). Given the importance of electroweak precision data in constraining these models, we also discuss projections for future measurements at the Tera-Z FCC-ee machine.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).