Intersection theory, relative cohomology and the Feynman parametrization

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Mingming Lu, Ziwen Wang, Li Lin Yang
{"title":"Intersection theory, relative cohomology and the Feynman parametrization","authors":"Mingming Lu,&nbsp;Ziwen Wang,&nbsp;Li Lin Yang","doi":"10.1007/JHEP05(2025)158","DOIUrl":null,"url":null,"abstract":"<p>We present a novel approach for loop integral reduction in the Feynman parametrization using intersection theory and relative cohomology. In this framework, Feynman integrals correspond to boundary-supported differential forms in the language of relative cohomology. The integral reduction can then be achieved by computing intersection numbers. We apply our method in several examples to demonstrate its correctness, and discuss the subtleties in certain degenerate limits.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)158.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)158","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel approach for loop integral reduction in the Feynman parametrization using intersection theory and relative cohomology. In this framework, Feynman integrals correspond to boundary-supported differential forms in the language of relative cohomology. The integral reduction can then be achieved by computing intersection numbers. We apply our method in several examples to demonstrate its correctness, and discuss the subtleties in certain degenerate limits.

交点理论,相对上同调和费曼参数化
利用交理论和相对上同调提出了一种新的Feynman参数化环积分约简方法。在这个框架中,费曼积分对应于相对上同调语言中的边界支持的微分形式。然后可以通过计算交集数来实现积分化简。我们用几个例子证明了该方法的正确性,并讨论了某些简并极限下的微妙之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信