Wiesław Olek, Waldemar Perdoch, Andreas Treu, Jerzy Majka, Łukasz Czajkowski, Bartłomiej Mazela, Jerzy Weres
{"title":"Transient water vapor diffusion in paper treated with methyltrimethoxysilane modified starch","authors":"Wiesław Olek, Waldemar Perdoch, Andreas Treu, Jerzy Majka, Łukasz Czajkowski, Bartłomiej Mazela, Jerzy Weres","doi":"10.1007/s00226-025-01663-5","DOIUrl":null,"url":null,"abstract":"<div><p>The interaction of cellulose paper with water is a major hindrance to its broader application. This study, which introduces a novel approach to understand water vapor diffusion in both untreated and treated paper, aims to identify the diffusion coefficient, a crucial property in improving the hydrophobicity of paper. The treatment process utilized an aqueous solution of starch or starch modified with methyltrimethoxysilane (MTMS). While the initial sorption method is frequently used to determine the diffusion coefficient, this study found that it could lead to significant errors due to the non-Fickian behavior exhibited by lignocellulosic materials. This behavior causes that the hygroscopic equilibrium is not instantly obtained by surface of paper. It also induces slowing down moisture diffusion in its final stage due to molecular relaxation. For the first time, the modified convective boundary condition was introduced into the moisture diffusion model in paper materials. The results from vapor sorption experiments demonstrated this non-Fickian behavior, particularly at high values of air relative humidity. The study also revealed that the commonly applied first kind boundary condition is not applicable, even for thin paper samples, inhibiting the use of the initial sorption method for determining the diffusion coefficient. While the treatment with starch and MTMS significantly improved the hydrophobic properties of paper, it didn’t alter substantially its hygroscopic properties, potentially due to not blocking active sorption sites of cellulose fibers. This research underscores the need for further investigation into the chemical modification of cellulose fibers to improve the hydrophobicity of paper.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-025-01663-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-025-01663-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction of cellulose paper with water is a major hindrance to its broader application. This study, which introduces a novel approach to understand water vapor diffusion in both untreated and treated paper, aims to identify the diffusion coefficient, a crucial property in improving the hydrophobicity of paper. The treatment process utilized an aqueous solution of starch or starch modified with methyltrimethoxysilane (MTMS). While the initial sorption method is frequently used to determine the diffusion coefficient, this study found that it could lead to significant errors due to the non-Fickian behavior exhibited by lignocellulosic materials. This behavior causes that the hygroscopic equilibrium is not instantly obtained by surface of paper. It also induces slowing down moisture diffusion in its final stage due to molecular relaxation. For the first time, the modified convective boundary condition was introduced into the moisture diffusion model in paper materials. The results from vapor sorption experiments demonstrated this non-Fickian behavior, particularly at high values of air relative humidity. The study also revealed that the commonly applied first kind boundary condition is not applicable, even for thin paper samples, inhibiting the use of the initial sorption method for determining the diffusion coefficient. While the treatment with starch and MTMS significantly improved the hydrophobic properties of paper, it didn’t alter substantially its hygroscopic properties, potentially due to not blocking active sorption sites of cellulose fibers. This research underscores the need for further investigation into the chemical modification of cellulose fibers to improve the hydrophobicity of paper.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.