Kinematic decomposition of volumetric particle tracking velocimetry data

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Michael R. Fenelon, Yang Zhang, Peter J. Schmid, Louis N. Cattafesta III
{"title":"Kinematic decomposition of volumetric particle tracking velocimetry data","authors":"Michael R. Fenelon,&nbsp;Yang Zhang,&nbsp;Peter J. Schmid,&nbsp;Louis N. Cattafesta III","doi":"10.1007/s00348-025-04035-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes a comprehensive kinematic decomposition of unstructured Lagrangian data from volumetric particle tracking velocimetry measurements. The method uses particle location data at an arbitrary time <i>t</i> and calculates linear affine mappings at a later time <span>\\(t+{\\text{d}}t\\)</span>. The transformation produces the full velocity gradient tensor, which can then be further analyzed to identify the four types of fluid motion (i.e., translation, rotation, dilatation, and shear) without using spatial derivatives. The methodology provides insights into the underlying kinematics and facilitates the identification of coherent structures using, for example, the <i>Q</i>-criterion, within the flow without resorting to numerical differentiation or data assimilation methods. The method is first validated using analytical solutions and direct numerical simulations and then applied to experimental subsonic jet measurements. The method’s accuracy is discussed, and leading-order error sources are presented. </p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-04035-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a comprehensive kinematic decomposition of unstructured Lagrangian data from volumetric particle tracking velocimetry measurements. The method uses particle location data at an arbitrary time t and calculates linear affine mappings at a later time \(t+{\text{d}}t\). The transformation produces the full velocity gradient tensor, which can then be further analyzed to identify the four types of fluid motion (i.e., translation, rotation, dilatation, and shear) without using spatial derivatives. The methodology provides insights into the underlying kinematics and facilitates the identification of coherent structures using, for example, the Q-criterion, within the flow without resorting to numerical differentiation or data assimilation methods. The method is first validated using analytical solutions and direct numerical simulations and then applied to experimental subsonic jet measurements. The method’s accuracy is discussed, and leading-order error sources are presented.

体积粒子跟踪测速数据的运动学分解
本文描述了体积粒子跟踪测速测量中非结构化拉格朗日数据的全面运动学分解。该方法使用任意时间t的粒子位置数据,并在稍后的时间计算线性仿射映射\(t+{\text{d}}t\)。变换产生完整的速度梯度张量,然后可以进一步分析,以确定四种类型的流体运动(即平移,旋转,膨胀和剪切),而不使用空间导数。该方法提供了对潜在运动学的见解,并有助于识别流中的相干结构,例如,使用q准则,而无需求助于数值微分或数据同化方法。首先通过解析解和直接数值模拟验证了该方法,然后将其应用于亚音速射流的实验测量。讨论了该方法的精度,并给出了前序误差来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信