Facile fabrication of carbon quantum dot-based CdS and Co-doped CdS nanocomposites as effective sensitizers for solar cell applications: a hydrothermal synthesis approach
IF 2.8 4区 工程技术Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Orhan Baytar, Sabit Horoz, Ömer Şahin, Sinan Kutluay
{"title":"Facile fabrication of carbon quantum dot-based CdS and Co-doped CdS nanocomposites as effective sensitizers for solar cell applications: a hydrothermal synthesis approach","authors":"Orhan Baytar, Sabit Horoz, Ömer Şahin, Sinan Kutluay","doi":"10.1007/s10854-025-14914-9","DOIUrl":null,"url":null,"abstract":"<div><p>The development of efficient and sustainable materials for solar energy conversion remains a key challenge in renewable energy research. Cadmium sulfide (CdS) nanoparticles are widely used as sensitizers in solar cells due to their favourable optoelectronic properties. However, their efficiency is often limited by charge recombination and poor electron transport. To overcome these limitations, this study explores the incorporation of carbon quantum dots (CQDs) and cobalt (Co) doping into CdS nanocomposites (NCs) to enhance their photovoltaic performance. CQDs, synthesized from mulberry molasses via a hydrothermal method, were incorporated into CdS to improve charge separation, while Co doping was employed to reduce recombination losses. The structural and electronic properties of the synthesized CdS/CQD and Co-doped CdS/CQD NCs were thoroughly characterized using Fourier transform infrared spectroscopy (FT–IR), Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet–visible (UV–Vis) spectroscopy. The photovoltaic performance was evaluated by current–density-voltage (J–V) measurements, revealing that the Co-doped CdS/CQD NCs exhibited superior efficiency (2.21%) compared to CdS/CQD (2.17%). The observed improvement is attributed to enhanced electron injection and reduced recombination due to Co doping. These results highlight the potential of Co-doped CdS/CQD NCs as effective sensitizers in solar cells, offering a promising strategy for the advancement of sustainable photovoltaic technologies.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 14","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-025-14914-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14914-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The development of efficient and sustainable materials for solar energy conversion remains a key challenge in renewable energy research. Cadmium sulfide (CdS) nanoparticles are widely used as sensitizers in solar cells due to their favourable optoelectronic properties. However, their efficiency is often limited by charge recombination and poor electron transport. To overcome these limitations, this study explores the incorporation of carbon quantum dots (CQDs) and cobalt (Co) doping into CdS nanocomposites (NCs) to enhance their photovoltaic performance. CQDs, synthesized from mulberry molasses via a hydrothermal method, were incorporated into CdS to improve charge separation, while Co doping was employed to reduce recombination losses. The structural and electronic properties of the synthesized CdS/CQD and Co-doped CdS/CQD NCs were thoroughly characterized using Fourier transform infrared spectroscopy (FT–IR), Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet–visible (UV–Vis) spectroscopy. The photovoltaic performance was evaluated by current–density-voltage (J–V) measurements, revealing that the Co-doped CdS/CQD NCs exhibited superior efficiency (2.21%) compared to CdS/CQD (2.17%). The observed improvement is attributed to enhanced electron injection and reduced recombination due to Co doping. These results highlight the potential of Co-doped CdS/CQD NCs as effective sensitizers in solar cells, offering a promising strategy for the advancement of sustainable photovoltaic technologies.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.