Unveiling the potential of a sustainable source biochar in flexible temperature sensor fabrication

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Özgür Yasin Keskin, Mustafa Erol
{"title":"Unveiling the potential of a sustainable source biochar in flexible temperature sensor fabrication","authors":"Özgür Yasin Keskin,&nbsp;Mustafa Erol","doi":"10.1007/s10854-025-14936-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study unveils a novel composite material for flexible temperature sensor applications, marking a significant step forward in the field of materials science and engineering. The conductive fillers, graphite, and biochar were used in various concentrations, along with the sodium silicate solution, which served as the matrix material. The fluid nature of the sodium silicate solution makes it optimal for screen and inkjet printing techniques. Composites with varying concentrations of graphite and biochar were prepared and deposited on a flexible substrate. Percolation and co-percolation studies were conducted. The electrical, chemical, morphological, and structural properties of the raw materials and composites were characterized using a Hall effect device, Raman spectroscopy, scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy, an X-ray diffractometer (XRD), and digital multimeters. The impact of conductive filler concentrations and the synergistic effect of graphite and biochar on sensor performance were investigated and compared, revealing innovative and promising results. The results show that biochar-based samples were superior to graphite-based samples in terms of good repeatability, better long-term stability, and response time. The combination of graphite and biochar also positively affected sensor performance in terms of sensor stability.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 14","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-025-14936-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14936-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study unveils a novel composite material for flexible temperature sensor applications, marking a significant step forward in the field of materials science and engineering. The conductive fillers, graphite, and biochar were used in various concentrations, along with the sodium silicate solution, which served as the matrix material. The fluid nature of the sodium silicate solution makes it optimal for screen and inkjet printing techniques. Composites with varying concentrations of graphite and biochar were prepared and deposited on a flexible substrate. Percolation and co-percolation studies were conducted. The electrical, chemical, morphological, and structural properties of the raw materials and composites were characterized using a Hall effect device, Raman spectroscopy, scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy, an X-ray diffractometer (XRD), and digital multimeters. The impact of conductive filler concentrations and the synergistic effect of graphite and biochar on sensor performance were investigated and compared, revealing innovative and promising results. The results show that biochar-based samples were superior to graphite-based samples in terms of good repeatability, better long-term stability, and response time. The combination of graphite and biochar also positively affected sensor performance in terms of sensor stability.

揭示了可持续生物炭在柔性温度传感器制造中的潜力
该研究揭示了一种用于柔性温度传感器的新型复合材料,标志着材料科学与工程领域的重大进步。采用不同浓度的导电填料、石墨和生物炭,以及硅酸钠溶液作为基质材料。硅酸钠溶液的流体性质使其成为丝网和喷墨印刷技术的最佳选择。制备了不同浓度的石墨和生物炭的复合材料,并将其沉积在柔性衬底上。进行了渗滤和共渗研究。利用霍尔效应装置、拉曼光谱、扫描电子显微镜(SEM)、能量色散x射线光谱、x射线衍射仪(XRD)和数字万用表对原料和复合材料的电学、化学、形态和结构性能进行了表征。研究和比较了导电填料浓度以及石墨和生物炭的协同效应对传感器性能的影响,揭示了创新和有希望的结果。结果表明,生物炭基样品在重复性好、长期稳定性好、响应时间短等方面优于石墨基样品。在传感器稳定性方面,石墨和生物炭的组合也对传感器性能产生了积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信