Heiko Braak, Benjamin Mayer, Simone Feldengut, Michael Schön, Kelly Del Tredici
{"title":"Sequence and trajectory of early Alzheimer’s disease-related tau inclusions in the hippocampal formation of cases without amyloid-β deposits","authors":"Heiko Braak, Benjamin Mayer, Simone Feldengut, Michael Schön, Kelly Del Tredici","doi":"10.1007/s00401-025-02862-x","DOIUrl":null,"url":null,"abstract":"<div><p>Sporadic Alzheimer’s disease (AD) involves specific neuronal types and progresses in a systematic manner, permitting subdivision into six neuropathological stages. Neurofibrillary tangle (NFT) stages I–III display abnormal tau inclusions confined to subcortical nuclei and temporal allocortical regions, frequently without amyloid β (Aβ) deposition. We previously suggested a sequence of neuronal involvement in AD that could proceed from entorhinal pre-α cells to hippocampal prosubicular pyramidal cells and the CA1/CA2 sectors, from there to the thorny excrescences on mossy cells in CA3/CA4, and, finally, from the mossy cells to dentate fascia (Fd) granular cells. Here, we aimed to see if associations existed between the early NFT stages I–III, when Aβ deposits are frequently absent, and the following four categories: (1) anatomical regions and abnormal morphological tau changes in region-specific layers, (2) nerve cell loss, (3) APOE genotype, and (4) the trajectory (directionality) of tau progression in the hippocampal formation. To do so, we examined the transentorhinal/entorhinal regions and hippocampal formation using AT8-immunohistochemistry in 100 µm sections from <i>N</i> = 308 brains with tau inclusions lacking Aβ deposits between NFT stages I and III (average age at death 66.7 years for females, 66.4 years for males). Our results indicated a significantly (<i>p</i> < 0.001) ordered progression of abnormal tau in a direction opposite to currently known unidirectional intrahippocampal connections, thereby indirectly supporting the idea of transneuronal abnormal tau spreading, i.e., anterogradely, through the hippocampal formation. Tau-related neuronal loss was also significant (<i>p</i> < 0.001 for the transentorhinal/entorhinal regions and for sectors CA1/CA2 and <i>p</i> = 0.003 for CA3/CA4/Fd). These findings challenge the amyloid cascade and the PART hypotheses, corroborating the concept that early AD-related tau inclusions and tau-related neuronal loss occur independently of Aβ deposition.</p></div>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":"149 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00401-025-02862-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00401-025-02862-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sporadic Alzheimer’s disease (AD) involves specific neuronal types and progresses in a systematic manner, permitting subdivision into six neuropathological stages. Neurofibrillary tangle (NFT) stages I–III display abnormal tau inclusions confined to subcortical nuclei and temporal allocortical regions, frequently without amyloid β (Aβ) deposition. We previously suggested a sequence of neuronal involvement in AD that could proceed from entorhinal pre-α cells to hippocampal prosubicular pyramidal cells and the CA1/CA2 sectors, from there to the thorny excrescences on mossy cells in CA3/CA4, and, finally, from the mossy cells to dentate fascia (Fd) granular cells. Here, we aimed to see if associations existed between the early NFT stages I–III, when Aβ deposits are frequently absent, and the following four categories: (1) anatomical regions and abnormal morphological tau changes in region-specific layers, (2) nerve cell loss, (3) APOE genotype, and (4) the trajectory (directionality) of tau progression in the hippocampal formation. To do so, we examined the transentorhinal/entorhinal regions and hippocampal formation using AT8-immunohistochemistry in 100 µm sections from N = 308 brains with tau inclusions lacking Aβ deposits between NFT stages I and III (average age at death 66.7 years for females, 66.4 years for males). Our results indicated a significantly (p < 0.001) ordered progression of abnormal tau in a direction opposite to currently known unidirectional intrahippocampal connections, thereby indirectly supporting the idea of transneuronal abnormal tau spreading, i.e., anterogradely, through the hippocampal formation. Tau-related neuronal loss was also significant (p < 0.001 for the transentorhinal/entorhinal regions and for sectors CA1/CA2 and p = 0.003 for CA3/CA4/Fd). These findings challenge the amyloid cascade and the PART hypotheses, corroborating the concept that early AD-related tau inclusions and tau-related neuronal loss occur independently of Aβ deposition.
期刊介绍:
Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.