Enhanced lithium extraction from brine using surface-modified LiMn2O4 electrode with nanoparticle islands†

Guiling Luo, Muyao He, Li Zhang, Jianquan Deng, Linlin Chen, Yanhong Chao, Haiyan Liu, Wenshuai Zhu and Zhichang Liu
{"title":"Enhanced lithium extraction from brine using surface-modified LiMn2O4 electrode with nanoparticle islands†","authors":"Guiling Luo, Muyao He, Li Zhang, Jianquan Deng, Linlin Chen, Yanhong Chao, Haiyan Liu, Wenshuai Zhu and Zhichang Liu","doi":"10.1039/D4IM00159A","DOIUrl":null,"url":null,"abstract":"<p>Lithium is an important raw material for new energy-powered vehicles, and ensuring its supply is of great significance for global green and sustainable development. Salt lake brine is the main lithium resource, but the separation of Li<small><sup>+</sup></small> from coexisting metals poses a major challenge. In this work, a lithium-storing metal oxide SnO<small><sub>2</sub></small> nanoparticle island-modified LiMn<small><sub>2</sub></small>O<small><sub>4</sub></small> electrode material is designed to endow LiMn<small><sub>2</sub></small>O<small><sub>4</sub></small> with higher lithium extraction capacity and cycling stability. The SnO<small><sub>2</sub></small> nanoparticle islands effectively mitigate stress during the charge–discharge process of LiMn<small><sub>2</sub></small>O<small><sub>4</sub></small>, thereby enhancing cycling stability and promoting the diffusion of Li<small><sup>+</sup></small>. The lithium adsorption capacity of the LiMn<small><sub>2</sub></small>O<small><sub>4</sub></small> electrode material modified with SnO<small><sub>2</sub></small> nanoparticles reaches 19.76 mg g<small><sup>−1</sup></small> within 1 hour, which is 1.7 times higher than that of LiMn<small><sub>2</sub></small>O<small><sub>4</sub></small> (11.45 mg g<small><sup>−1</sup></small>). The LiMn<small><sub>2</sub></small>O<small><sub>4</sub></small> electrode material modified with SnO<small><sub>2</sub></small> nanoparticles shows good selectivity and cycling stability for the separation of lithium ions.</p><p>Keywords: Electrochemical adsorption; Extraction lithium; Surface modified; LiMn<small><sub>2</sub></small>O<small><sub>4</sub></small>.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 3","pages":" 353-362"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00159a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/im/d4im00159a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium is an important raw material for new energy-powered vehicles, and ensuring its supply is of great significance for global green and sustainable development. Salt lake brine is the main lithium resource, but the separation of Li+ from coexisting metals poses a major challenge. In this work, a lithium-storing metal oxide SnO2 nanoparticle island-modified LiMn2O4 electrode material is designed to endow LiMn2O4 with higher lithium extraction capacity and cycling stability. The SnO2 nanoparticle islands effectively mitigate stress during the charge–discharge process of LiMn2O4, thereby enhancing cycling stability and promoting the diffusion of Li+. The lithium adsorption capacity of the LiMn2O4 electrode material modified with SnO2 nanoparticles reaches 19.76 mg g−1 within 1 hour, which is 1.7 times higher than that of LiMn2O4 (11.45 mg g−1). The LiMn2O4 electrode material modified with SnO2 nanoparticles shows good selectivity and cycling stability for the separation of lithium ions.

Keywords: Electrochemical adsorption; Extraction lithium; Surface modified; LiMn2O4.

纳米粒子岛型表面修饰LiMn2O4电极强化盐水锂萃取
锂是新能源汽车的重要原材料,确保锂供应对全球绿色可持续发展具有重要意义。盐湖卤水是锂的主要资源,但从共存金属中分离锂离子是一个重大挑战。本文设计了一种储锂金属氧化物SnO2纳米颗粒海岛修饰的LiMn2O4电极材料,使LiMn2O4具有更高的锂萃取能力和循环稳定性。SnO2纳米颗粒岛状结构能有效缓解LiMn2O4充放电过程中的应力,从而提高循环稳定性,促进Li+的扩散。SnO2纳米粒子修饰的LiMn2O4电极材料在1小时内的锂吸附量达到19.76 mg g−1,是LiMn2O4电极材料(11.45 mg g−1)的1.7倍。纳米SnO2修饰的LiMn2O4电极材料对锂离子的分离具有良好的选择性和循环稳定性。关键词:电化学吸附;提取锂;表面改性;LiMn2O4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信