Tong Han, Lu Wei, Shaohua Xie, Yuxi Liu, Hongxing Dai and Jiguang Deng
{"title":"Catalyst design for ammonia decomposition: an overview","authors":"Tong Han, Lu Wei, Shaohua Xie, Yuxi Liu, Hongxing Dai and Jiguang Deng","doi":"10.1039/D4IM00112E","DOIUrl":null,"url":null,"abstract":"<p>Ammonia serves as a viable medium for hydrogen storage owing to its significant hydrogen content and elevated energy density, and the absence of carbon dioxide emissions during ammonia-to-hydrogen production has inspired more research on ammonia decomposition. Despite growing interest, a significant gap persists between the depth of existing studies and the practical approach to on-the-spot hydrogen generation using ammonia decomposition. The creation of effective and accessible catalysts to feed ammonia decomposition is a critical step in addressing this daunting challenge. This paper systematically summarizes four key catalyst design strategies, including size effect, alkalinity modulation, metal–support interactions, and alloying, informed by experimental and theoretical investigations into ammonia decomposition. Each strategy's underlying mechanism for enhancing ammonia decomposition is elucidated in detail. Moreover, the paper categorizes catalysts employed in existing ammonia decomposition reactors to guide future catalyst development. The influence of diverse energy sources and reactor configurations on catalyst performance is also discussed to provide a comprehensive framework for advancing ammonia decomposition catalyst research.</p><p>Keywords: Ammonia decomposition reaction; Catalyst design; Particle size effect; Adjustment of alkalinity; Strong metal–support interaction; Alloying effect.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 3","pages":" 311-331"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00112e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/im/d4im00112e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia serves as a viable medium for hydrogen storage owing to its significant hydrogen content and elevated energy density, and the absence of carbon dioxide emissions during ammonia-to-hydrogen production has inspired more research on ammonia decomposition. Despite growing interest, a significant gap persists between the depth of existing studies and the practical approach to on-the-spot hydrogen generation using ammonia decomposition. The creation of effective and accessible catalysts to feed ammonia decomposition is a critical step in addressing this daunting challenge. This paper systematically summarizes four key catalyst design strategies, including size effect, alkalinity modulation, metal–support interactions, and alloying, informed by experimental and theoretical investigations into ammonia decomposition. Each strategy's underlying mechanism for enhancing ammonia decomposition is elucidated in detail. Moreover, the paper categorizes catalysts employed in existing ammonia decomposition reactors to guide future catalyst development. The influence of diverse energy sources and reactor configurations on catalyst performance is also discussed to provide a comprehensive framework for advancing ammonia decomposition catalyst research.
期刊介绍:
Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated.
The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale.
Industrial Chemistry & Materials publishes:
● Communications
● Full papers
● Minireviews
● Reviews
● Perspectives
● Comments