Energy-Spectral Efficiency Trade-Off in IRS-Assisted NOMA Systems: A Weighted Product Method

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS
Haitham Al-Obiedollah;Haythem Bany Salameh;Sharief Abdel-Razeq
{"title":"Energy-Spectral Efficiency Trade-Off in IRS-Assisted NOMA Systems: A Weighted Product Method","authors":"Haitham Al-Obiedollah;Haythem Bany Salameh;Sharief Abdel-Razeq","doi":"10.1109/TGCN.2024.3426311","DOIUrl":null,"url":null,"abstract":"The deployment of intelligent reflecting surfaces (IRS) in non-orthogonal multiple access (NOMA), known as IRS-assisted NOMA-based systems, has recently been considered a potential solution to address the complicated demands of beyond-fifth-generation communication networks. This paper investigates a multi-objective allocation resource allocation technique for an IR-assisted hybrid time division multiple access (TDMA)-NOMA network. To reflect the requirements of such a system, two conflicting performance metrics, namely energy efficiency (EE) and spectral efficiency (SE), are simultaneously optimized under a set of quality-of-service constraints. The proposed SE-EE trade-off design is formulated as a multi-objective optimization (MOO) framework. However, such an MOO problem cannot be solved by conventional approaches. Therefore, the weighted product method (WPM) is proposed to transform the MOO problem into a conventional single-objective optimization (SOO) problem. Meanwhile, the SOO problem through the WPM approach is non-convex in nature, where the optimization parameters, namely the power allocation and the reflecting coefficients of the IRS elements, are jointly designed. As a result, an iterative technique is designed to address this problem and assess the optimization variables. The simulation results demonstrate that the proposed WPM for the SE-EE trade-off resource allocation technique can balance competing optimization variables alongside meeting the system’s demands.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"9 2","pages":"635-644"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10592067/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The deployment of intelligent reflecting surfaces (IRS) in non-orthogonal multiple access (NOMA), known as IRS-assisted NOMA-based systems, has recently been considered a potential solution to address the complicated demands of beyond-fifth-generation communication networks. This paper investigates a multi-objective allocation resource allocation technique for an IR-assisted hybrid time division multiple access (TDMA)-NOMA network. To reflect the requirements of such a system, two conflicting performance metrics, namely energy efficiency (EE) and spectral efficiency (SE), are simultaneously optimized under a set of quality-of-service constraints. The proposed SE-EE trade-off design is formulated as a multi-objective optimization (MOO) framework. However, such an MOO problem cannot be solved by conventional approaches. Therefore, the weighted product method (WPM) is proposed to transform the MOO problem into a conventional single-objective optimization (SOO) problem. Meanwhile, the SOO problem through the WPM approach is non-convex in nature, where the optimization parameters, namely the power allocation and the reflecting coefficients of the IRS elements, are jointly designed. As a result, an iterative technique is designed to address this problem and assess the optimization variables. The simulation results demonstrate that the proposed WPM for the SE-EE trade-off resource allocation technique can balance competing optimization variables alongside meeting the system’s demands.
irs辅助NOMA系统的能谱效率权衡:加权乘积法
在非正交多址(NOMA)中部署智能反射面(IRS),被称为IRS辅助NOMA系统,最近被认为是解决第五代以上通信网络复杂需求的潜在解决方案。研究了一种红外辅助TDMA -NOMA混合网络的多目标资源分配技术。为了反映这样一个系统的需求,两个相互冲突的性能指标,即能源效率(EE)和频谱效率(SE),在一组服务质量约束下同时优化。提出的SE-EE权衡设计是一个多目标优化(MOO)框架。然而,这种MOO问题无法通过传统方法解决。为此,提出了加权积法(WPM),将MOO问题转化为传统的单目标优化问题。同时,通过WPM方法求解的SOO问题本质上是非凸的,其中优化参数即IRS单元的功率分配和反射系数是共同设计的。因此,设计了一种迭代技术来解决这个问题并评估优化变量。仿真结果表明,所提出的基于SE-EE权衡资源分配技术的WPM能够在满足系统需求的同时平衡竞争优化变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信