Upscale Layer Acceleration on Existing AI Hardware

IF 2.8 2区 工程技术 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Vuk Vranjkovic;Predrag Teodorovic;Rastislav Struharik
{"title":"Upscale Layer Acceleration on Existing AI Hardware","authors":"Vuk Vranjkovic;Predrag Teodorovic;Rastislav Struharik","doi":"10.1109/TVLSI.2025.3558946","DOIUrl":null,"url":null,"abstract":"Upscaling layers are important components of modern deep learning networks but often pose computational challenges for hardware (HW) accelerators. This article addresses this issue by introducing a novel layer-replacement technique to efficiently process upscaling layers using existing hardware-supported operations like depthwise convolutions and maximum pooling. To minimize the number of replacement layers, we propose an efficient layer number reduction algorithm. Experimental results on four deep neural networks demonstrate a significant speedup ranging from <inline-formula> <tex-math>$1.58\\times $ </tex-math></inline-formula> to <inline-formula> <tex-math>$32.88\\times $ </tex-math></inline-formula> compared to the original HW/software (SW) execution approach, and from <inline-formula> <tex-math>$3.65\\times $ </tex-math></inline-formula> to <inline-formula> <tex-math>$19.21\\times $ </tex-math></inline-formula> compared to the software-only solution, with minimal hardware overhead (0.068% more field-programmable gate array (FPGA) look-up tables (LUTs)). Notably, our technique introduces no numerical errors and maintains comparable input data processing quality to the original network.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 6","pages":"1624-1637"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10974749/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Upscaling layers are important components of modern deep learning networks but often pose computational challenges for hardware (HW) accelerators. This article addresses this issue by introducing a novel layer-replacement technique to efficiently process upscaling layers using existing hardware-supported operations like depthwise convolutions and maximum pooling. To minimize the number of replacement layers, we propose an efficient layer number reduction algorithm. Experimental results on four deep neural networks demonstrate a significant speedup ranging from $1.58\times $ to $32.88\times $ compared to the original HW/software (SW) execution approach, and from $3.65\times $ to $19.21\times $ compared to the software-only solution, with minimal hardware overhead (0.068% more field-programmable gate array (FPGA) look-up tables (LUTs)). Notably, our technique introduces no numerical errors and maintains comparable input data processing quality to the original network.
现有AI硬件的高级图层加速
升级层是现代深度学习网络的重要组成部分,但通常会给硬件(HW)加速器带来计算挑战。本文通过引入一种新颖的层替换技术来解决这个问题,该技术使用现有硬件支持的操作(如深度卷积和最大池化)有效地处理升级层。为了最小化替换层的数量,我们提出了一种有效的层数缩减算法。在四个深度神经网络上的实验结果表明,与原始的硬件/软件(SW)执行方法相比,显著的加速范围从1.58倍到32.88倍不等,与纯软件解决方案相比,从3.65倍到19.21倍不等,硬件开销最小(现场可编程门阵列(FPGA)查找表(lut)增加0.068%)。值得注意的是,我们的技术没有引入数值误差,并保持与原始网络相当的输入数据处理质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
7.10%
发文量
187
审稿时长
3.6 months
期刊介绍: The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society. Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels. To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信