New Bounds for the Optimal Density of Covering Single-Insertion Codes via the Turán Density

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Oleg Pikhurko;Oleg Verbitsky;Maksim Zhukovskii
{"title":"New Bounds for the Optimal Density of Covering Single-Insertion Codes via the Turán Density","authors":"Oleg Pikhurko;Oleg Verbitsky;Maksim Zhukovskii","doi":"10.1109/TIT.2025.3557393","DOIUrl":null,"url":null,"abstract":"We prove that the density of any covering single-insertion code <inline-formula> <tex-math>$C\\subseteq X^{r}$ </tex-math></inline-formula> over the <italic>n</i>-symbol alphabet <italic>X</i> cannot be smaller than <inline-formula> <tex-math>$1/r+\\delta _{r}$ </tex-math></inline-formula> for some positive real <inline-formula> <tex-math>$\\delta _{r}$ </tex-math></inline-formula> not depending on <italic>n</i>. This improves the volume lower bound of <inline-formula> <tex-math>$1/(r+1)$ </tex-math></inline-formula>. On the other hand, we observe that, for all sufficiently large <italic>r</i>, if <italic>n</i> tends to infinity then the asymptotic upper bound of <inline-formula> <tex-math>$7/(r+1)$ </tex-math></inline-formula> due to Lenz et al. (2021) can be improved to <inline-formula> <tex-math>$4.911/(r+1)$ </tex-math></inline-formula>. Both the lower and the upper bounds are achieved by relating the code density to the Turán density from extremal combinatorics. For the last task, we use the analytic framework of measurable subsets of the real cube <inline-formula> <tex-math>$[{0,1}]^{r}$ </tex-math></inline-formula>.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 6","pages":"4260-4266"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10948504","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10948504/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the density of any covering single-insertion code $C\subseteq X^{r}$ over the n-symbol alphabet X cannot be smaller than $1/r+\delta _{r}$ for some positive real $\delta _{r}$ not depending on n. This improves the volume lower bound of $1/(r+1)$ . On the other hand, we observe that, for all sufficiently large r, if n tends to infinity then the asymptotic upper bound of $7/(r+1)$ due to Lenz et al. (2021) can be improved to $4.911/(r+1)$ . Both the lower and the upper bounds are achieved by relating the code density to the Turán density from extremal combinatorics. For the last task, we use the analytic framework of measurable subsets of the real cube $[{0,1}]^{r}$ .
通过Turán密度覆盖单插入码的最优密度的新界限
我们证明了对于不依赖于n的正实数$\delta _{r}$,任意覆盖单插入码$C\subseteq X^{r}$的密度不能小于$1/r+\delta _{r}$。这改进了$1/(r+1)$的体积下界。另一方面,我们观察到,对于所有足够大的r,如果n趋于无穷,则由Lenz等人(2021)得出的$7/(r+1)$的渐近上界可以改进为$4.911/(r+1)$。下界和上界都是通过将代码密度与极值组合中的Turán密度相关联来实现的。对于最后一个任务,我们使用实立方体$[{0,1}]^{r}$的可测量子集的解析框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信