{"title":"Enhancing Wireless PHY With Adaptive OFDM and Multiarmed Bandit Learning on Zynq System-on-Chip","authors":"Neelam Singh;Sumit J. Darak","doi":"10.1109/TVLSI.2025.3528865","DOIUrl":null,"url":null,"abstract":"In this work, we present an intelligent and reconfigurable wireless physical layer (PHY) that dynamically adjusts the transmission parameters for a given radio frequency (RF) environment. The proposed PHY is based on orthogonal frequency division multiplexing (OFDM) and can dynamically augment OFDM with a finite impulse response (FIR) low-pass filter to improve the out-of-band emissions (OOBE). To make these adaptations intelligently, we employ multiarmed bandit (MAB)-based online learning algorithms, specifically upper confidence bound with control variate (UCB-CV). UCB-CV enhances traditional UCB by incorporating additional information such as interference level and transmit power, allowing it to manage interference more effectively. These algorithms are integrated into the PHY of an FPGA-based OFDM transceiver on the Zynq system-on-chip (SoC), facilitating real-time decision-making based on side-channel interference and other parameters. Our comparative analysis highlights the enhanced performance of the UCB-CV algorithm over the traditional UCB in terms of reducing the bit-error rate (BER) and managing interference more effectively. Unlike the traditional UCB, UCB-CV leverages side information through a control variate approach, incorporating the coefficient of variation (CV) into reward estimation to better handle interference. Additionally, we underline the advantages of filtered-OFDM (FOFDM) compared to standard OFDM. Notably, FOFDM significantly reduces OOBE by 20–75 dBW/Hz and improves BER. In environments with high interference, UCB-CV achieves a throughput improvement of 29.54% compared to UCB.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 6","pages":"1651-1664"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10964385/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present an intelligent and reconfigurable wireless physical layer (PHY) that dynamically adjusts the transmission parameters for a given radio frequency (RF) environment. The proposed PHY is based on orthogonal frequency division multiplexing (OFDM) and can dynamically augment OFDM with a finite impulse response (FIR) low-pass filter to improve the out-of-band emissions (OOBE). To make these adaptations intelligently, we employ multiarmed bandit (MAB)-based online learning algorithms, specifically upper confidence bound with control variate (UCB-CV). UCB-CV enhances traditional UCB by incorporating additional information such as interference level and transmit power, allowing it to manage interference more effectively. These algorithms are integrated into the PHY of an FPGA-based OFDM transceiver on the Zynq system-on-chip (SoC), facilitating real-time decision-making based on side-channel interference and other parameters. Our comparative analysis highlights the enhanced performance of the UCB-CV algorithm over the traditional UCB in terms of reducing the bit-error rate (BER) and managing interference more effectively. Unlike the traditional UCB, UCB-CV leverages side information through a control variate approach, incorporating the coefficient of variation (CV) into reward estimation to better handle interference. Additionally, we underline the advantages of filtered-OFDM (FOFDM) compared to standard OFDM. Notably, FOFDM significantly reduces OOBE by 20–75 dBW/Hz and improves BER. In environments with high interference, UCB-CV achieves a throughput improvement of 29.54% compared to UCB.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.