LYT-NET: Lightweight YUV Transformer-Based Network for Low-Light Image Enhancement

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Alexandru Brateanu;Raul Balmez;Adrian Avram;Ciprian Orhei;Cosmin Ancuti
{"title":"LYT-NET: Lightweight YUV Transformer-Based Network for Low-Light Image Enhancement","authors":"Alexandru Brateanu;Raul Balmez;Adrian Avram;Ciprian Orhei;Cosmin Ancuti","doi":"10.1109/LSP.2025.3563125","DOIUrl":null,"url":null,"abstract":"This letter introduces LYT-Net, a novel lightweight transformer-based model for low-light image enhancement. LYT-Net consists of several layers and detachable blocks, including our novel blocks—Channel-Wise Denoiser (<bold>CWD</b>) and Multi-Stage Squeeze & Excite Fusion (<bold>MSEF</b>)—along with the traditional Transformer block, Multi-Headed Self-Attention (<bold>MHSA</b>). In our method we adopt a dual-path approach, treating chrominance channels <inline-formula><tex-math>$U$</tex-math></inline-formula> and <inline-formula><tex-math>$V$</tex-math></inline-formula> and luminance channel <inline-formula><tex-math>$Y$</tex-math></inline-formula> as separate entities to help the model better handle illumination adjustment and corruption restoration. Our comprehensive evaluation on established LLIE datasets demonstrates that, despite its low complexity, our model outperforms recent LLIE methods.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"2065-2069"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10972228/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter introduces LYT-Net, a novel lightweight transformer-based model for low-light image enhancement. LYT-Net consists of several layers and detachable blocks, including our novel blocks—Channel-Wise Denoiser (CWD) and Multi-Stage Squeeze & Excite Fusion (MSEF)—along with the traditional Transformer block, Multi-Headed Self-Attention (MHSA). In our method we adopt a dual-path approach, treating chrominance channels $U$ and $V$ and luminance channel $Y$ as separate entities to help the model better handle illumination adjustment and corruption restoration. Our comprehensive evaluation on established LLIE datasets demonstrates that, despite its low complexity, our model outperforms recent LLIE methods.
LYT-NET:用于弱光图像增强的轻量级YUV变压器网络
这封信介绍了LYT-Net,一种基于变压器的新型轻量化模型,用于弱光图像增强。LYT-Net由多层和可拆卸的模块组成,包括我们的新模块-信道智能降噪(CWD)和多级挤压与激发融合(MSEF) -以及传统的变压器模块,多头自关注(MHSA)。在我们的方法中,我们采用双路径方法,将亮度通道$U$和$V$和亮度通道$Y$作为单独的实体来处理,以帮助模型更好地处理照明调整和损坏恢复。我们对已建立的LLIE数据集的综合评估表明,尽管其复杂性较低,但我们的模型优于最近的LLIE方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信