{"title":"Cost-Optimized Double-Node-Upset-Recovery Latch Designs With Aging Mitigation and Algorithm-Based Verification for Long-Term Robustness Enhancement","authors":"Aibin Yan;Changli Hu;Jing Li;Na Bai;Zhengfeng Huang;Tianming Ni;Girard Patrick;Xiaoqing Wen","doi":"10.1109/TVLSI.2025.3554117","DOIUrl":null,"url":null,"abstract":"With the continuous advancement of CMOS technologies, soft errors, such as single-node upset (SNU) and double-node upset (DNU), caused by radiation in nanoscale integrated circuits, are becoming increasingly prominent. Meanwhile, transistor aging mitigation is indispensable for long-term robustness enhancement. First, to reduce the impact of radiation on circuits, we propose a novel DNU-recovery latch with low cost, namely, DURLC, only consisting of four dual-input C-elements (CEs) and four clock-gated input-split inverters for the storage of values. Second, we propose a DNU-recovery latch with moderate cost, namely, DURMC, based on seven CEs and four inverters, for convenience to optimize the latch to alleviate aging. The proposed DNU-recovery latch with mitigated aging is called DURMA. The latch employs a high-speed path to reduce delay without sacrificing performance when mitigating aging issues. Finally, we propose an algorithm-based verification method to validate the DNU recovery of the proposed latches. The simulation results show that, compared with the state-of-the-art robust latches, the proposed latches have the advantages of DNU recovery with moderate and even low cost, and meanwhile, aging is effectively mitigated for the DURMA latch.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 6","pages":"1765-1773"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10948415/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous advancement of CMOS technologies, soft errors, such as single-node upset (SNU) and double-node upset (DNU), caused by radiation in nanoscale integrated circuits, are becoming increasingly prominent. Meanwhile, transistor aging mitigation is indispensable for long-term robustness enhancement. First, to reduce the impact of radiation on circuits, we propose a novel DNU-recovery latch with low cost, namely, DURLC, only consisting of four dual-input C-elements (CEs) and four clock-gated input-split inverters for the storage of values. Second, we propose a DNU-recovery latch with moderate cost, namely, DURMC, based on seven CEs and four inverters, for convenience to optimize the latch to alleviate aging. The proposed DNU-recovery latch with mitigated aging is called DURMA. The latch employs a high-speed path to reduce delay without sacrificing performance when mitigating aging issues. Finally, we propose an algorithm-based verification method to validate the DNU recovery of the proposed latches. The simulation results show that, compared with the state-of-the-art robust latches, the proposed latches have the advantages of DNU recovery with moderate and even low cost, and meanwhile, aging is effectively mitigated for the DURMA latch.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.