{"title":"Aluminum Oxide 50/50 Splitter Based on Multimode Interferometer for the Blue/Near-UV Spectral Range","authors":"Ronan Kervazo;Georges Perin;Stéphane Trebaol;Loïc Bodiou;Joël Charrier","doi":"10.1109/LPT.2025.3562902","DOIUrl":null,"url":null,"abstract":"Research on integrated blue and near-ultraviolet photonics has been increasingly investigated in recent years. To enable the development of photonic integrated circuits in this wavelength range, one of the challenges is to identify a transparent platform that can provide a variety of integrated components. Aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) was demonstrated to exhibit low propagation losses for wavelengths below 450 nm, making it a very promising platform to operate at short wavelengths. MMIs are very convenient integrated components for splitting or combining signals and can be used for many applications such as on-chip spectrometry or microscopy. The development of a 50/50 coupler at 405 nm is reported based on symmetrical multimode interferometer (MMI) presenting a splitting ratio of <inline-formula> <tex-math>$3.20~\\pm ~0.34$ </tex-math></inline-formula> dB/MMI. Characterizations at 375, 420, and 454 nm are also presented.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 14","pages":"753-756"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10975801/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Research on integrated blue and near-ultraviolet photonics has been increasingly investigated in recent years. To enable the development of photonic integrated circuits in this wavelength range, one of the challenges is to identify a transparent platform that can provide a variety of integrated components. Aluminum oxide (Al2O3) was demonstrated to exhibit low propagation losses for wavelengths below 450 nm, making it a very promising platform to operate at short wavelengths. MMIs are very convenient integrated components for splitting or combining signals and can be used for many applications such as on-chip spectrometry or microscopy. The development of a 50/50 coupler at 405 nm is reported based on symmetrical multimode interferometer (MMI) presenting a splitting ratio of $3.20~\pm ~0.34$ dB/MMI. Characterizations at 375, 420, and 454 nm are also presented.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.