{"title":"Batched Nonparametric Contextual Bandits","authors":"Rong Jiang;Cong Ma","doi":"10.1109/TIT.2025.3555071","DOIUrl":null,"url":null,"abstract":"We study nonparametric contextual bandits under batch constraints, where the expected reward for each action is modeled as a smooth function of covariates, and the policy updates are made at the end of each batch of observations. We establish a minimax regret lower bound for this setting and propose a novel batch learning algorithm that achieves the optimal regret (up to logarithmic factors). In essence, our procedure dynamically splits the covariate space into smaller bins, carefully aligning their widths with the batch size. Our theoretical results suggest that for mathematical framework of contextual bandit, a nearly constant number of policy updates can attain optimal regret in the fully online setting.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 6","pages":"4537-4555"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10942414/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We study nonparametric contextual bandits under batch constraints, where the expected reward for each action is modeled as a smooth function of covariates, and the policy updates are made at the end of each batch of observations. We establish a minimax regret lower bound for this setting and propose a novel batch learning algorithm that achieves the optimal regret (up to logarithmic factors). In essence, our procedure dynamically splits the covariate space into smaller bins, carefully aligning their widths with the batch size. Our theoretical results suggest that for mathematical framework of contextual bandit, a nearly constant number of policy updates can attain optimal regret in the fully online setting.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.