Yunbo Niu , Jianzhou Wang , Ziyuan Zhang , Yisheng Cao , Pengfei Yan , Zhiwu Li
{"title":"Amplify seasonality, prioritize meteorological: Strengthening seasonal correlation in photovoltaic forecasting with dual-layer hierarchical attention","authors":"Yunbo Niu , Jianzhou Wang , Ziyuan Zhang , Yisheng Cao , Pengfei Yan , Zhiwu Li","doi":"10.1016/j.apenergy.2025.126104","DOIUrl":null,"url":null,"abstract":"<div><div>Overloading beyond the grid’s capacity poses a serious threat to grid security. In 2023, photovoltaic power generation accounted for 75 % of the total increase in renewable energy generation. However, due to the significant fluctuations in photovoltaic power output, forecasting photovoltaic generation has become a crucial tool for ensuring grid security. A key challenge in practical applications remains the deep mining of hidden features in photovoltaic data and their correlation with meteorological data to improve prediction accuracy. To address this, this study proposes a photovoltaic prediction strategy called “Amplify Seasonality, Prioritize Meteorological\". This strategy aims to leverage meteorological information to connect with the seasonal component of photovoltaic power data while preventing meteorological factors from affecting the trend component, thereby effectively reducing the impact of short-term seasonal meteorological fluctuations on the trend component of photovoltaic data. Additionally, this study proposes a seasonal component prediction unit with a dual-layer hierarchical attention mechanism, which enhances the focus on the connections between meteorological features, key time nodes, and the seasonal component. These innovations enable the proposed AspmNet model to achieve superior prediction accuracy. The model was validated using Australian photovoltaic data through experiments with forecast lengths of 1 day, 2 days, and 4 days. In terms of Mean Absolute Error, the model demonstrated over a 10 % improvement compared to other benchmark models.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"394 ","pages":"Article 126104"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925008347","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Overloading beyond the grid’s capacity poses a serious threat to grid security. In 2023, photovoltaic power generation accounted for 75 % of the total increase in renewable energy generation. However, due to the significant fluctuations in photovoltaic power output, forecasting photovoltaic generation has become a crucial tool for ensuring grid security. A key challenge in practical applications remains the deep mining of hidden features in photovoltaic data and their correlation with meteorological data to improve prediction accuracy. To address this, this study proposes a photovoltaic prediction strategy called “Amplify Seasonality, Prioritize Meteorological". This strategy aims to leverage meteorological information to connect with the seasonal component of photovoltaic power data while preventing meteorological factors from affecting the trend component, thereby effectively reducing the impact of short-term seasonal meteorological fluctuations on the trend component of photovoltaic data. Additionally, this study proposes a seasonal component prediction unit with a dual-layer hierarchical attention mechanism, which enhances the focus on the connections between meteorological features, key time nodes, and the seasonal component. These innovations enable the proposed AspmNet model to achieve superior prediction accuracy. The model was validated using Australian photovoltaic data through experiments with forecast lengths of 1 day, 2 days, and 4 days. In terms of Mean Absolute Error, the model demonstrated over a 10 % improvement compared to other benchmark models.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.