Maxence Cassier , Patrick Joly , Luis Alejandro Rosas Martínez
{"title":"Long time behaviour of the solution of Maxwell's equations in dissipative generalized Lorentz materials (II) A modal approach","authors":"Maxence Cassier , Patrick Joly , Luis Alejandro Rosas Martínez","doi":"10.1016/j.matpur.2025.103720","DOIUrl":null,"url":null,"abstract":"<div><div>This work concerns the analysis of electromagnetic dispersive media modelled by generalized Lorentz models. More precisely, this paper is the second of two articles dedicated to the long time behaviour of solutions of Maxwell's equations in dissipative Lorentz media, via the decay rate of the electromagnetic energy for the corresponding Cauchy problem. In opposition to the frequency dependent Lyapunov functions approach used in <span><span>[4]</span></span>, we develop a method based on the spectral analysis of the underlying non selfadjoint operator of the model. Although more involved, this approach is closer to physics, as it uses the dispersion relation of the model, and has the advantage to provide more precise and more optimal results, leading to distinguish the notion of weak and strong dissipation.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"201 ","pages":"Article 103720"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000649","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work concerns the analysis of electromagnetic dispersive media modelled by generalized Lorentz models. More precisely, this paper is the second of two articles dedicated to the long time behaviour of solutions of Maxwell's equations in dissipative Lorentz media, via the decay rate of the electromagnetic energy for the corresponding Cauchy problem. In opposition to the frequency dependent Lyapunov functions approach used in [4], we develop a method based on the spectral analysis of the underlying non selfadjoint operator of the model. Although more involved, this approach is closer to physics, as it uses the dispersion relation of the model, and has the advantage to provide more precise and more optimal results, leading to distinguish the notion of weak and strong dissipation.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.