Long time behaviour of the solution of Maxwell's equations in dissipative generalized Lorentz materials (II) A modal approach

IF 2.1 1区 数学 Q1 MATHEMATICS
Maxence Cassier , Patrick Joly , Luis Alejandro Rosas Martínez
{"title":"Long time behaviour of the solution of Maxwell's equations in dissipative generalized Lorentz materials (II) A modal approach","authors":"Maxence Cassier ,&nbsp;Patrick Joly ,&nbsp;Luis Alejandro Rosas Martínez","doi":"10.1016/j.matpur.2025.103720","DOIUrl":null,"url":null,"abstract":"<div><div>This work concerns the analysis of electromagnetic dispersive media modelled by generalized Lorentz models. More precisely, this paper is the second of two articles dedicated to the long time behaviour of solutions of Maxwell's equations in dissipative Lorentz media, via the decay rate of the electromagnetic energy for the corresponding Cauchy problem. In opposition to the frequency dependent Lyapunov functions approach used in <span><span>[4]</span></span>, we develop a method based on the spectral analysis of the underlying non selfadjoint operator of the model. Although more involved, this approach is closer to physics, as it uses the dispersion relation of the model, and has the advantage to provide more precise and more optimal results, leading to distinguish the notion of weak and strong dissipation.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"201 ","pages":"Article 103720"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000649","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work concerns the analysis of electromagnetic dispersive media modelled by generalized Lorentz models. More precisely, this paper is the second of two articles dedicated to the long time behaviour of solutions of Maxwell's equations in dissipative Lorentz media, via the decay rate of the electromagnetic energy for the corresponding Cauchy problem. In opposition to the frequency dependent Lyapunov functions approach used in [4], we develop a method based on the spectral analysis of the underlying non selfadjoint operator of the model. Although more involved, this approach is closer to physics, as it uses the dispersion relation of the model, and has the advantage to provide more precise and more optimal results, leading to distinguish the notion of weak and strong dissipation.
耗散广义洛伦兹材料中麦克斯韦方程组解的长时间行为(II)一个模态方法
这项工作涉及用广义洛伦兹模型模拟的电磁色散介质的分析。更准确地说,这篇论文是两篇文章中的第二篇,专门讨论麦克斯韦方程组解在耗散洛伦兹介质中的长时间行为,通过相应的柯西问题的电磁能量衰减率。与[4]中使用的频率相关Lyapunov函数方法相反,我们开发了一种基于模型底层非自伴随算子的频谱分析的方法。这种方法虽然比较复杂,但更接近物理,因为它利用了模型的色散关系,并且具有提供更精确和更优结果的优势,从而区分了弱耗散和强耗散的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信