{"title":"Beyond Singular Perturbation for linear port-Hamiltonian systems","authors":"Mario Spirito , Bernhard Maschke , Yann Le Gorrec","doi":"10.1016/j.ejcon.2025.101237","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the structure/passivity-preserving model order reduction of linear port-Hamiltonian systems. We first present, with the help of the implicit port-Hamiltonian formulation, some issues related to the standard Singular Perturbation technique. We use a simple example to analyze these aspects, paving the way for a recent approach developed to reduce the model order, called Beyond Singular Perturbation. This technique leverages the description of the dominant evolution of the original system whenever a time-scale separation is present among its dynamics. With this tool, we study the system’s Hamiltonian time evolution, showing that we can successfully reconstruct the dominant behavior of the Hamiltonian by slightly modifying the storage function of the resulting reduced-order model. We conclude the work with a discussion about the class of input signals that allow a good performance of the reduced-order model.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"84 ","pages":"Article 101237"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358025000664","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with the structure/passivity-preserving model order reduction of linear port-Hamiltonian systems. We first present, with the help of the implicit port-Hamiltonian formulation, some issues related to the standard Singular Perturbation technique. We use a simple example to analyze these aspects, paving the way for a recent approach developed to reduce the model order, called Beyond Singular Perturbation. This technique leverages the description of the dominant evolution of the original system whenever a time-scale separation is present among its dynamics. With this tool, we study the system’s Hamiltonian time evolution, showing that we can successfully reconstruct the dominant behavior of the Hamiltonian by slightly modifying the storage function of the resulting reduced-order model. We conclude the work with a discussion about the class of input signals that allow a good performance of the reduced-order model.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.