Strong complete mappings for 2-groups

IF 0.7 3区 数学 Q2 MATHEMATICS
Reza Akhtar , Jacob Charboneau , Stephen M. Gagola III
{"title":"Strong complete mappings for 2-groups","authors":"Reza Akhtar ,&nbsp;Jacob Charboneau ,&nbsp;Stephen M. Gagola III","doi":"10.1016/j.disc.2025.114568","DOIUrl":null,"url":null,"abstract":"<div><div>A strong complete mapping for a group <em>G</em> is a bijection <span><math><mi>φ</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>G</mi></math></span> such that the maps <span><math><mi>x</mi><mo>↦</mo><mi>x</mi><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><mi>x</mi><mo>↦</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> are also bijections. Groups admitting a strong complete mapping are important to the study of orthogonality problems for Latin squares and group sequencings, among other applications. In previous work we showed that a finite 3-group that contains no cyclic subgroup of index 3 is strongly admissible. In this article, we employ a substantially different strategy to show that a finite 2-group that contains no cyclic subgroup of index 4 is strongly admissible.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114568"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001761","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A strong complete mapping for a group G is a bijection φ:GG such that the maps xxφ(x) and xx1φ(x) are also bijections. Groups admitting a strong complete mapping are important to the study of orthogonality problems for Latin squares and group sequencings, among other applications. In previous work we showed that a finite 3-group that contains no cyclic subgroup of index 3 is strongly admissible. In this article, we employ a substantially different strategy to show that a finite 2-group that contains no cyclic subgroup of index 4 is strongly admissible.
2-群的强完全映射
群G的一个强完全映射是一个双射φ:G→G,使得映射x∑xφ(x)和x∑x−1φ(x)也是双射。承认强完全映射的群对拉丁方的正交性问题和群序列的研究以及其他应用具有重要意义。在以前的工作中,我们证明了不含指标3的循环子群的有限3群是强可容许的。在本文中,我们采用了一种完全不同的策略来证明不包含索引4的循环子群的有限2群是强可容许的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信