Unraveling the impact of nano-microscale polyethylene and polypropylene plastics on Nicotiana tabacum: Physiological responses and molecular mechanisms
Muhammad Arshad , Zelin Zhou , Yichi Zhang , Shaojie Lin , Muhammad Shoaib , Huijuan Zhang , Weichang Gao , Jun Wu , Feng Hu , Huixin Li
{"title":"Unraveling the impact of nano-microscale polyethylene and polypropylene plastics on Nicotiana tabacum: Physiological responses and molecular mechanisms","authors":"Muhammad Arshad , Zelin Zhou , Yichi Zhang , Shaojie Lin , Muhammad Shoaib , Huijuan Zhang , Weichang Gao , Jun Wu , Feng Hu , Huixin Li","doi":"10.1016/j.envexpbot.2025.106169","DOIUrl":null,"url":null,"abstract":"<div><div>Plastics, as emerging pollutants, are increasingly found in soil, yet their systemic impact on soil ecosystems and plants remains poorly understood. This study explores the impacts of Polypropylene (PP) and Polyethylene (PE) microplastics, of varying sizes (20 nm and 100 µm) and doses (100 and 1000 mg/kg), on tobacco plant growth. Over a 55-d exposure period, PP and PE MPs exhibited a dose-dependent effect on the growth of tobacco plants. Notably, both PE and PP exposures significantly suppressed plant height, as well as fresh and dry biomass, with PP demonstrating greater toxicity. However, an exception was observed in the PP treatment, with marginal yet notable increase in growth indicators was recorded at a 20 nm particle size under high-concentration exposure. Further investigations revealed that MPs exposure at varying concentrations negatively impacted photosynthetic activity and triggered oxidative stress in leaves, with higher-dose treatments leading to a more pronounced accumulation of reactive oxygen species (ROS). To elucidate the molecular response mechanisms of tobacco leaves under PP-MP stress, a co-omics analysis was conducted. The analysis identified key pathways involved in the plant’s response to PP-MP stress, including plant hormone signal transduction, the MAPK signaling, flavonoid and phenylpropanoid biosynthesis, and photosynthesis antenna proteins. A comprehensive assessment of genes and metabolites revealed significant alterations in the biosynthesis of several plant hormones and flavonoids, including auxin, cytokinin, abscisic acid (ABA), and jasmonic acid. These findings suggest that plastics may impair photosynthetic efficiency, alter hormonal responses, and cause redox imbalance, ultimately affecting plant growth and resilience.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"236 ","pages":"Article 106169"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847225000863","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plastics, as emerging pollutants, are increasingly found in soil, yet their systemic impact on soil ecosystems and plants remains poorly understood. This study explores the impacts of Polypropylene (PP) and Polyethylene (PE) microplastics, of varying sizes (20 nm and 100 µm) and doses (100 and 1000 mg/kg), on tobacco plant growth. Over a 55-d exposure period, PP and PE MPs exhibited a dose-dependent effect on the growth of tobacco plants. Notably, both PE and PP exposures significantly suppressed plant height, as well as fresh and dry biomass, with PP demonstrating greater toxicity. However, an exception was observed in the PP treatment, with marginal yet notable increase in growth indicators was recorded at a 20 nm particle size under high-concentration exposure. Further investigations revealed that MPs exposure at varying concentrations negatively impacted photosynthetic activity and triggered oxidative stress in leaves, with higher-dose treatments leading to a more pronounced accumulation of reactive oxygen species (ROS). To elucidate the molecular response mechanisms of tobacco leaves under PP-MP stress, a co-omics analysis was conducted. The analysis identified key pathways involved in the plant’s response to PP-MP stress, including plant hormone signal transduction, the MAPK signaling, flavonoid and phenylpropanoid biosynthesis, and photosynthesis antenna proteins. A comprehensive assessment of genes and metabolites revealed significant alterations in the biosynthesis of several plant hormones and flavonoids, including auxin, cytokinin, abscisic acid (ABA), and jasmonic acid. These findings suggest that plastics may impair photosynthetic efficiency, alter hormonal responses, and cause redox imbalance, ultimately affecting plant growth and resilience.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.