Distributed privacy-preserving keyword querying for integrated data in IoT networks via function secret sharing

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wei Shao , Lianhai Wang , Chunfu Jia , Qizheng Wang , Jinpeng Wang , Shujiang Xu , Shuhui Zhang , Mingyue Li
{"title":"Distributed privacy-preserving keyword querying for integrated data in IoT networks via function secret sharing","authors":"Wei Shao ,&nbsp;Lianhai Wang ,&nbsp;Chunfu Jia ,&nbsp;Qizheng Wang ,&nbsp;Jinpeng Wang ,&nbsp;Shujiang Xu ,&nbsp;Shuhui Zhang ,&nbsp;Mingyue Li","doi":"10.1016/j.inffus.2025.103298","DOIUrl":null,"url":null,"abstract":"<div><div>The growing adoption of IoT applications underscores the need for advanced data fusion and information acquisition techniques, driving demand for secure, privacy-preserving querying of integrated IoT data. Existing schemes like searchable encryption are practical but leak access patterns, while leakage-free methods using Oblivious RAM or cryptographic techniques incur significant resource overhead. In this paper, we propose PQBL, a framework for privacy-preserving, trusted data integration and search, leveraging distributed trust against malicious attackers. Our query scheme combines function secret sharing and blockchain to enable efficient, privacy-preserving searches on encrypted IoT data. To improve search efficiency, we introduce a compressed RAMBO Bloom Filter for keyword trapdoors. Formal security analysis shows that PQBL leaks no search patterns and is secure against Privacy under Selective Chosen-Plaintext Attacks. Extensive experiments on the PQBL prototype validate its effectiveness and efficiency.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"123 ","pages":"Article 103298"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525003719","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The growing adoption of IoT applications underscores the need for advanced data fusion and information acquisition techniques, driving demand for secure, privacy-preserving querying of integrated IoT data. Existing schemes like searchable encryption are practical but leak access patterns, while leakage-free methods using Oblivious RAM or cryptographic techniques incur significant resource overhead. In this paper, we propose PQBL, a framework for privacy-preserving, trusted data integration and search, leveraging distributed trust against malicious attackers. Our query scheme combines function secret sharing and blockchain to enable efficient, privacy-preserving searches on encrypted IoT data. To improve search efficiency, we introduce a compressed RAMBO Bloom Filter for keyword trapdoors. Formal security analysis shows that PQBL leaks no search patterns and is secure against Privacy under Selective Chosen-Plaintext Attacks. Extensive experiments on the PQBL prototype validate its effectiveness and efficiency.
基于功能秘密共享的物联网集成数据分布式保隐私关键字查询
物联网应用的日益普及凸显了对先进数据融合和信息采集技术的需求,推动了对集成物联网数据的安全、隐私保护查询的需求。现有的方案(如可搜索加密)是实用的,但存在泄漏访问模式,而使用遗忘RAM或加密技术的无泄漏方法会产生大量的资源开销。本文提出了一种基于分布式信任的隐私保护、可信数据集成和搜索框架PQBL,利用分布式信任抵御恶意攻击者。我们的查询方案结合了功能秘密共享和区块链,以实现对加密物联网数据的高效,隐私保护搜索。为了提高搜索效率,我们引入了一个压缩的RAMBO布隆过滤器。正式的安全性分析表明,PQBL不泄露搜索模式,在选择性选择明文攻击下是安全的。在PQBL样机上进行的大量实验验证了其有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信