Improving acid-free and selective leaching of lithium from end-of-life LiFePO4 batteries using sodium persulfate: Impact of removing organic matter by thermal treatment in an inert atmosphere
IF 4.8 2区 材料科学Q1 METALLURGY & METALLURGICAL ENGINEERING
Jong-Won Choi , Mooki Bae , Hyunju Lee , Hong-In Kim , Hyun-Woo Shim , Jinyoung Je , Gigap Han , Junhyun Choi , Hyunjoon Lee , Sookyung Kim
{"title":"Improving acid-free and selective leaching of lithium from end-of-life LiFePO4 batteries using sodium persulfate: Impact of removing organic matter by thermal treatment in an inert atmosphere","authors":"Jong-Won Choi , Mooki Bae , Hyunju Lee , Hong-In Kim , Hyun-Woo Shim , Jinyoung Je , Gigap Han , Junhyun Choi , Hyunjoon Lee , Sookyung Kim","doi":"10.1016/j.hydromet.2025.106498","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports an acid-free, efficient, and selective method for Li leaching at room temperature from end-of-life (EoL) LiFePO₄ (LFP) batteries using sodium persulfate (Na₂S₂O₈) as a promising lixiviant. The objective of this study is to leach target metal, i.e., Li, as efficiently as possible while minimizing chemical consumption. First, valuable metal-containing materials called black powders (BPs) were recovered from actual EoL LFP batteries. Then, thermal treatment at 500 °C in a non-active, i.e., inert, atmosphere was employed to remove organic matter derived from the binder and electrolyte in the BPs, significantly enhancing leaching efficiency (LE). Under optimal conditions (0.4 M Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, 100 g/L pulp density, room temperature, and 30 min), Li was leached with an efficiency of 99.9% and a selectivity of more than 99.5% over Fe and P. This study highlights the importance of organic matter removal for achieving high Li leaching efficiency with minimal Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> consumption and suggests the potential of Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> for sustainable Li recovery in LFP hydrometallurgical processes.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106498"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000635","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study reports an acid-free, efficient, and selective method for Li leaching at room temperature from end-of-life (EoL) LiFePO₄ (LFP) batteries using sodium persulfate (Na₂S₂O₈) as a promising lixiviant. The objective of this study is to leach target metal, i.e., Li, as efficiently as possible while minimizing chemical consumption. First, valuable metal-containing materials called black powders (BPs) were recovered from actual EoL LFP batteries. Then, thermal treatment at 500 °C in a non-active, i.e., inert, atmosphere was employed to remove organic matter derived from the binder and electrolyte in the BPs, significantly enhancing leaching efficiency (LE). Under optimal conditions (0.4 M Na2S2O8, 100 g/L pulp density, room temperature, and 30 min), Li was leached with an efficiency of 99.9% and a selectivity of more than 99.5% over Fe and P. This study highlights the importance of organic matter removal for achieving high Li leaching efficiency with minimal Na2S2O8 consumption and suggests the potential of Na2S2O8 for sustainable Li recovery in LFP hydrometallurgical processes.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.