Non-homologous sequence interactions during meiosis: meiotic challenges and evolutionary opportunities

IF 3.7 2区 生物学 Q2 CELL BIOLOGY
Beth L Dumont, Mary Ann Handel
{"title":"Non-homologous sequence interactions during meiosis: meiotic challenges and evolutionary opportunities","authors":"Beth L Dumont,&nbsp;Mary Ann Handel","doi":"10.1016/j.gde.2025.102365","DOIUrl":null,"url":null,"abstract":"<div><div>A hallmark of meiosis is pairing of homologous chromosomes, an event that ensures proper segregation into the gametes. Homology pairing is crucial to the formation of normal gametes, the maintenance of genomic integrity, and avoidance of aneuploidy. However, chromosomes are not completely homologous. Here we discuss two notable exceptions to homology: the mammalian sex chromosomes and centromeres. In themselves, these exceptions illustrate meiotic adaptations that both ensure correct chromosome segregation and present evolutionary opportunities. More broadly, such examples of non-homology provide a window for viewing normal mechanisms of meiotic pairing and chromosome modifications. Current analyses of mammalian meiotic chromosome dynamics suggest that the basis for the initial recognition of homology early in meiosis may be based in epigenetic chromatin modifications. Chromatin units may both form pairing sites and provide the modifications that allow non-homologous sequences to be tolerated. Despite recent research progress, we have yet to understand why some non-homologies are tolerated, while others lead to aneuploidy. Understanding how genomes evolve strategies to subvert the usual rules of meiosis will benefit from studies focused on the identification and characterization of meiosis in species with recently acquired non-homology. Looking forward, we are now armed with technologies and tools suited to precisely measure the extent of nonhomology across mammalian chromosomes and to probe the molecular and biophysical steps required for the initiation of homologous chromosome recognition and pairing. These goals are important for elucidating an essential mechanism of meiosis and ultimately for advancing the clinical diagnosis of gametic and embryo aneuploidy.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"93 ","pages":"Article 102365"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X25000577","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A hallmark of meiosis is pairing of homologous chromosomes, an event that ensures proper segregation into the gametes. Homology pairing is crucial to the formation of normal gametes, the maintenance of genomic integrity, and avoidance of aneuploidy. However, chromosomes are not completely homologous. Here we discuss two notable exceptions to homology: the mammalian sex chromosomes and centromeres. In themselves, these exceptions illustrate meiotic adaptations that both ensure correct chromosome segregation and present evolutionary opportunities. More broadly, such examples of non-homology provide a window for viewing normal mechanisms of meiotic pairing and chromosome modifications. Current analyses of mammalian meiotic chromosome dynamics suggest that the basis for the initial recognition of homology early in meiosis may be based in epigenetic chromatin modifications. Chromatin units may both form pairing sites and provide the modifications that allow non-homologous sequences to be tolerated. Despite recent research progress, we have yet to understand why some non-homologies are tolerated, while others lead to aneuploidy. Understanding how genomes evolve strategies to subvert the usual rules of meiosis will benefit from studies focused on the identification and characterization of meiosis in species with recently acquired non-homology. Looking forward, we are now armed with technologies and tools suited to precisely measure the extent of nonhomology across mammalian chromosomes and to probe the molecular and biophysical steps required for the initiation of homologous chromosome recognition and pairing. These goals are important for elucidating an essential mechanism of meiosis and ultimately for advancing the clinical diagnosis of gametic and embryo aneuploidy.
减数分裂过程中的非同源序列相互作用:减数分裂的挑战和进化机会
减数分裂的一个标志是同源染色体配对,这一事件确保了配子的适当分离。同源配对对正常配子的形成、基因组完整性的维持和非整倍性的避免至关重要。然而,染色体不是完全同源的。在这里,我们讨论同源性的两个值得注意的例外:哺乳动物性染色体和着丝粒。就其本身而言,这些例外说明减数分裂适应既确保了正确的染色体分离,又提供了进化机会。更广泛地说,这些非同源性的例子为观察减数分裂配对和染色体修饰的正常机制提供了一个窗口。目前对哺乳动物减数分裂染色体动力学的分析表明,减数分裂早期同源性的初始识别的基础可能是基于表观遗传染色质修饰。染色质单元既可以形成配对位点,也可以提供允许非同源序列被耐受的修饰。尽管最近的研究取得了进展,但我们还没有理解为什么一些非同源性是可以容忍的,而另一些则导致非整倍体。了解基因组如何进化策略以颠覆减数分裂的通常规则将受益于最近获得的非同源性物种减数分裂的鉴定和表征。展望未来,我们现在拥有适合精确测量哺乳动物染色体非同源性程度的技术和工具,并探索启动同源染色体识别和配对所需的分子和生物物理步骤。这些目标对于阐明减数分裂的基本机制以及最终推进配子和胚胎非整倍体的临床诊断具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
102
审稿时长
1 months
期刊介绍: Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...] The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year: • Cancer Genomics • Genome Architecture and Expression • Molecular and genetic basis of disease • Developmental mechanisms, patterning and evolution • Cell reprogramming, regeneration and repair • Genetics of Human Origin / Evolutionary genetics (alternate years)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信