{"title":"AIM2 mediated neuron PANoptosis plays an important role in diabetes cognitive dysfunction","authors":"Chengning Ma, Xiang Zhou, Siyang Pan, Lumei Liu","doi":"10.1016/j.bbr.2025.115651","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing global aging population has led to a rise in diabetic cognitive dysfunction (DCD), a common complication of diabetes that significantly impacts the health of elderly individuals. Neuronal death is a key factor in cognitive impairment, with studies showing interactions between cellular pyroptosis, apoptosis, and necroptosis in the development of neurodegenerative disorders. This has led to the concept of PANoptosis, where these pathways work together to cause cell death. High glucose levels can induce neuronal damage and cognitive dysfunction in rats, leading to various forms of programmed cell death. It is hypothesized that high glucose can trigger neuronal PANoptosis, resulting in cognitive dysfunction. AIM2, an upstream regulator of PANoptosis, is closely associated with the pathogenesis of DCD. In DCD, dysregulated glucose metabolism induces the release of mitochondrial DNA (mtDNA), which acts as a ligand to activate the cell membrane-bound DNA sensor AIM2. Upon activation, AIM2 oligomerizes and recruits a caspase recruit domain (ASC), forming a complex that activates caspase-1. Caspase-1 activation subsequently triggers the production of pro-inflammatory cytokines, induces pyroptosis, and mediates apoptosis, necroptosis, and PANoptosis in neurons through signaling crosstalk. Understanding the pathophysiological mechanism of AIM2-mediated neuronal PANoptosis in DCD development can aid in early diagnosis and identify new therapeutic targets.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"491 ","pages":"Article 115651"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432825002372","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing global aging population has led to a rise in diabetic cognitive dysfunction (DCD), a common complication of diabetes that significantly impacts the health of elderly individuals. Neuronal death is a key factor in cognitive impairment, with studies showing interactions between cellular pyroptosis, apoptosis, and necroptosis in the development of neurodegenerative disorders. This has led to the concept of PANoptosis, where these pathways work together to cause cell death. High glucose levels can induce neuronal damage and cognitive dysfunction in rats, leading to various forms of programmed cell death. It is hypothesized that high glucose can trigger neuronal PANoptosis, resulting in cognitive dysfunction. AIM2, an upstream regulator of PANoptosis, is closely associated with the pathogenesis of DCD. In DCD, dysregulated glucose metabolism induces the release of mitochondrial DNA (mtDNA), which acts as a ligand to activate the cell membrane-bound DNA sensor AIM2. Upon activation, AIM2 oligomerizes and recruits a caspase recruit domain (ASC), forming a complex that activates caspase-1. Caspase-1 activation subsequently triggers the production of pro-inflammatory cytokines, induces pyroptosis, and mediates apoptosis, necroptosis, and PANoptosis in neurons through signaling crosstalk. Understanding the pathophysiological mechanism of AIM2-mediated neuronal PANoptosis in DCD development can aid in early diagnosis and identify new therapeutic targets.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.