Itamar Glazer , Nelson Simões , Ioannis Eleftherianos , Jayashree Ramakrishnan , Dana Ment , Duarte Toubarro , Sreeradha Mallick
{"title":"Entomopathogenic nematodes: Survival, virulence and immunity","authors":"Itamar Glazer , Nelson Simões , Ioannis Eleftherianos , Jayashree Ramakrishnan , Dana Ment , Duarte Toubarro , Sreeradha Mallick","doi":"10.1016/j.jip.2025.108363","DOIUrl":null,"url":null,"abstract":"<div><div>As entomopathogenic nematodes (EPNs) are used as biological control agents, their survival and persistence are crucial to ensure success in application against insect pests. The survival of <em>Heterorhabditis</em> and <em>Steinernema</em> species is dependent on abiotic and biotic factors in the environment. Abiotic stress environments such as desiccation, temperature, and ultraviolet radiation (UV) severely impact their performance on field. EPNs produce and secrete effector molecules during the early stages of infection to interfere with the molecular mechanisms that control the insect innate immune function. Also, EPN effectors facilitate the subsequent release and spread of their symbiotic bacteria within the host. Hence, a comprehensive understanding of the underlying survival and virulence mechanisms enabling protection against environmental conditions and insect host immune responses is imperative to realistically enhance their performance on field. Thus, identifying key players regulating EPN survival, virulence and immunity could invariably contribute towards developing more robust, reliable solutions and application strategies including genetic tools and formulation technologies.</div></div>","PeriodicalId":16296,"journal":{"name":"Journal of invertebrate pathology","volume":"212 ","pages":"Article 108363"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of invertebrate pathology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022201125000977","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As entomopathogenic nematodes (EPNs) are used as biological control agents, their survival and persistence are crucial to ensure success in application against insect pests. The survival of Heterorhabditis and Steinernema species is dependent on abiotic and biotic factors in the environment. Abiotic stress environments such as desiccation, temperature, and ultraviolet radiation (UV) severely impact their performance on field. EPNs produce and secrete effector molecules during the early stages of infection to interfere with the molecular mechanisms that control the insect innate immune function. Also, EPN effectors facilitate the subsequent release and spread of their symbiotic bacteria within the host. Hence, a comprehensive understanding of the underlying survival and virulence mechanisms enabling protection against environmental conditions and insect host immune responses is imperative to realistically enhance their performance on field. Thus, identifying key players regulating EPN survival, virulence and immunity could invariably contribute towards developing more robust, reliable solutions and application strategies including genetic tools and formulation technologies.
期刊介绍:
The Journal of Invertebrate Pathology presents original research articles and notes on the induction and pathogenesis of diseases of invertebrates, including the suppression of diseases in beneficial species, and the use of diseases in controlling undesirable species. In addition, the journal publishes the results of physiological, morphological, genetic, immunological and ecological studies as related to the etiologic agents of diseases of invertebrates.
The Journal of Invertebrate Pathology is the adopted journal of the Society for Invertebrate Pathology, and is available to SIP members at a special reduced price.