Jilu Zhang , Xiaohan Zhou , Xinrong Liu , Yang Kong , Bin Xu , Lojain Suliman
{"title":"Deformation characteristics and seepage mechanism of fractured rock mass under triaxial compression process","authors":"Jilu Zhang , Xiaohan Zhou , Xinrong Liu , Yang Kong , Bin Xu , Lojain Suliman","doi":"10.1016/j.sandf.2025.101630","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the gas seepage characteristics within fractured rock masses is of great significance for the prediction and prevention of hazardous gases in underground engineering. The formation is actually under a triaxial non-uniform stress state as a result of geological tectonic forces. Few studies on gas seepage take into account various stress situations. In this study, the flow characteristics of precast fractured rock masses were investigated through laboratory triaxial tests. The research results show that the volume strain of precast fracture changes from expansion to contraction with the decrease of the fracture angle under axial load. The fracture permeability decreases with the increase of axial strain before rock mass failure. After failure, the increase in permeability is not only related to the confining pressure and fracture angle but also has a significant correlation with the failure mode. Considering the triaxial non-uniform stress state, a coupled calculation model for seepage-stress-damage was established, and the calculation method was verified to effectively reflect the deformation and seepage characteristics of fractures. The lateral force on the fracture surface mainly causes the permeability of precast fractures to increase, and the increase extent of fracture permeability is negatively correlated with the fracture angle and elastic modulus.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 3","pages":"Article 101630"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625000642","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the gas seepage characteristics within fractured rock masses is of great significance for the prediction and prevention of hazardous gases in underground engineering. The formation is actually under a triaxial non-uniform stress state as a result of geological tectonic forces. Few studies on gas seepage take into account various stress situations. In this study, the flow characteristics of precast fractured rock masses were investigated through laboratory triaxial tests. The research results show that the volume strain of precast fracture changes from expansion to contraction with the decrease of the fracture angle under axial load. The fracture permeability decreases with the increase of axial strain before rock mass failure. After failure, the increase in permeability is not only related to the confining pressure and fracture angle but also has a significant correlation with the failure mode. Considering the triaxial non-uniform stress state, a coupled calculation model for seepage-stress-damage was established, and the calculation method was verified to effectively reflect the deformation and seepage characteristics of fractures. The lateral force on the fracture surface mainly causes the permeability of precast fractures to increase, and the increase extent of fracture permeability is negatively correlated with the fracture angle and elastic modulus.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.