Peixin Weng , Bingtao Li , Yiming Lyu , Song Shu , Hui Zhang
{"title":"The nucleon properties in finite temperature and density with Gaussian fluctuations","authors":"Peixin Weng , Bingtao Li , Yiming Lyu , Song Shu , Hui Zhang","doi":"10.1016/j.physletb.2025.139587","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the properties of nucleons at finite temperature and density using a two-flavor quark meson model with Gaussian fluctuations that extend beyond the mean-field approximation. Our findings suggest that Gaussian fluctuations lead to a non-monotonic behavior of the nucleon mass as a function of temperature and density, which may play an important role in the study of the hadronization process of relativistic heavy-ion collisions. Moreover, we observe an increase in the nucleon radius due to Gaussian fluctuations, suggesting an effective repulsive force akin to the Casimir effect, as observed in the gold-bromobenzene-silica system. This study offers new insights into how temperature, density, and quantum fluctuations affect the structure and properties of nucleons under extreme conditions.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"867 ","pages":"Article 139587"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037026932500348X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the properties of nucleons at finite temperature and density using a two-flavor quark meson model with Gaussian fluctuations that extend beyond the mean-field approximation. Our findings suggest that Gaussian fluctuations lead to a non-monotonic behavior of the nucleon mass as a function of temperature and density, which may play an important role in the study of the hadronization process of relativistic heavy-ion collisions. Moreover, we observe an increase in the nucleon radius due to Gaussian fluctuations, suggesting an effective repulsive force akin to the Casimir effect, as observed in the gold-bromobenzene-silica system. This study offers new insights into how temperature, density, and quantum fluctuations affect the structure and properties of nucleons under extreme conditions.
期刊介绍:
Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.