Antonio Tonutti , Francesca Motta , Natasa Isailovic , Carlo Selmi , Suraj Timilsina , Merrill Eric Gershwin , Maria De Santis
{"title":"Mechanistic considerations linking SARS-CoV-2 infection, inflammation, and the loss of immune tolerance","authors":"Antonio Tonutti , Francesca Motta , Natasa Isailovic , Carlo Selmi , Suraj Timilsina , Merrill Eric Gershwin , Maria De Santis","doi":"10.1016/j.coi.2025.102567","DOIUrl":null,"url":null,"abstract":"<div><div>The immune response to SARS-CoV-2 has been implicated in the onset of multiple, seemingly unrelated, autoimmune diseases. The immune response to SARS-CoV-2 has also been implicated in the unmasking and/or production of multiple autoantibodies, even in the absence of clinical disease. Despite such data, it remains unclear whether antibodies targeting antiviral signaling proteins and mitochondrial antigens reflect bystander activation or alternatively contribute to <em>de novo</em> viral immune escape mechanisms. With these comments in mind, a variety of professional antibody presenting cells and including lung resident macrophages of COVID-19 infected patients are impacted and dependent on the uptake of antibody-opsonized virus by Fcγ receptors; yet infection is aborted via antibody-dependent effector mechanisms or pyroptosis, possibly leading to autoantibody production, and autoinflammatory manifestations, respectively.</div><div>TRIM21/Ro52, a cytosolic E3-ubiquitin ligase with an Fc-gamma receptor domain, functions as an intracytoplasmic antibody receptor, directs immune complexes binding virions but also autoantigens to autophagy. During autophagy, Ig-virions-TRIM21/Ro52-autoantigens complexes bind directly to class II human leukocyte antigen in lysosomal compartment, leading to subsequent presentation on the cell surface. This process favors the development of a specific humoral immune response but has the potential to lead to loss of tolerance. Interestingly, TRIM21/Ro52 can also contribute to pyroptosis. We propose that TRIM21/Ro52 is well-placed at the crossroad between the inflammatory response and clinical autoimmunity.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":"95 ","pages":"Article 102567"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952791525000433","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The immune response to SARS-CoV-2 has been implicated in the onset of multiple, seemingly unrelated, autoimmune diseases. The immune response to SARS-CoV-2 has also been implicated in the unmasking and/or production of multiple autoantibodies, even in the absence of clinical disease. Despite such data, it remains unclear whether antibodies targeting antiviral signaling proteins and mitochondrial antigens reflect bystander activation or alternatively contribute to de novo viral immune escape mechanisms. With these comments in mind, a variety of professional antibody presenting cells and including lung resident macrophages of COVID-19 infected patients are impacted and dependent on the uptake of antibody-opsonized virus by Fcγ receptors; yet infection is aborted via antibody-dependent effector mechanisms or pyroptosis, possibly leading to autoantibody production, and autoinflammatory manifestations, respectively.
TRIM21/Ro52, a cytosolic E3-ubiquitin ligase with an Fc-gamma receptor domain, functions as an intracytoplasmic antibody receptor, directs immune complexes binding virions but also autoantigens to autophagy. During autophagy, Ig-virions-TRIM21/Ro52-autoantigens complexes bind directly to class II human leukocyte antigen in lysosomal compartment, leading to subsequent presentation on the cell surface. This process favors the development of a specific humoral immune response but has the potential to lead to loss of tolerance. Interestingly, TRIM21/Ro52 can also contribute to pyroptosis. We propose that TRIM21/Ro52 is well-placed at the crossroad between the inflammatory response and clinical autoimmunity.
期刊介绍:
Current Opinion in Immunology aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Immunology we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
Current Opinion in Immunology will serve as an invaluable source of information for researchers, lecturers, teachers, professionals, policy makers and students.
Current Opinion in Immunology builds on Elsevier''s reputation for excellence in scientific publishing and long-standing commitment to communicating reproducible biomedical research targeted at improving human health. It is a companion to the new Gold Open Access journal Current Research in Immunology and is part of the Current Opinion and Research(CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists'' workflow.