Yuanyuan Xie , Caihong Li , Tingting Wu , Run Tang , Yanxin Hu , Yishun Zhu , Huihe Qiu , Rui Zhang
{"title":"Analysis of energy storage battery degradation under different electrical stress levels","authors":"Yuanyuan Xie , Caihong Li , Tingting Wu , Run Tang , Yanxin Hu , Yishun Zhu , Huihe Qiu , Rui Zhang","doi":"10.1016/j.csite.2025.106355","DOIUrl":null,"url":null,"abstract":"<div><div>Exploring the aging characteristics of batteries and investigating their degradation mechanisms are crucial for optimizing battery usage and developing reliable energy storage systems. In this work, we utilize an equivalent circuit model to analyze the input and output data of the battery, identifying changes in the battery's internal parameters during the aging process. The results indicate that aging cycle tests conducted using three discharge modes—1C, 3C, and over-discharge—show capacity retention rates with linear, sub-linear, and super-linear evolutionary trajectories, respectively. During cyclic testing at 1C discharge, structural changes in the graphite anode due to prolonged cycling lead to decreased charge transfer efficiency, which is the primary cause of performance degradation. Under 3C discharge conditions, high currents result in the formation and growth of the solid electrolyte interphase (SEI) film, electrolyte decomposition, and structural changes in the electrode materials, all of which accelerate the rate of battery aging. In over-discharge mode, the main cause of aging is attributed to current collector corrosion and the decomposition of electrolyte components. Furthermore, under 3C discharge conditions, the battery performance exhibits the fastest degradation rate, with heat generation power increasing nearly threefold compared to the initial test, while the power decay rate is approximately 0.7.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"72 ","pages":"Article 106355"},"PeriodicalIF":6.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X2500615X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring the aging characteristics of batteries and investigating their degradation mechanisms are crucial for optimizing battery usage and developing reliable energy storage systems. In this work, we utilize an equivalent circuit model to analyze the input and output data of the battery, identifying changes in the battery's internal parameters during the aging process. The results indicate that aging cycle tests conducted using three discharge modes—1C, 3C, and over-discharge—show capacity retention rates with linear, sub-linear, and super-linear evolutionary trajectories, respectively. During cyclic testing at 1C discharge, structural changes in the graphite anode due to prolonged cycling lead to decreased charge transfer efficiency, which is the primary cause of performance degradation. Under 3C discharge conditions, high currents result in the formation and growth of the solid electrolyte interphase (SEI) film, electrolyte decomposition, and structural changes in the electrode materials, all of which accelerate the rate of battery aging. In over-discharge mode, the main cause of aging is attributed to current collector corrosion and the decomposition of electrolyte components. Furthermore, under 3C discharge conditions, the battery performance exhibits the fastest degradation rate, with heat generation power increasing nearly threefold compared to the initial test, while the power decay rate is approximately 0.7.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.