Masoud Bodaghi , Lyazid Bouhala , Claus G. Bayreuther , Ahmed El Moumen , David Macieira , Martin Kerschbaum
{"title":"On the understanding of GRAM® technology- robotic wet filament winding- for high-performance fibre-reinforced thermoset composites","authors":"Masoud Bodaghi , Lyazid Bouhala , Claus G. Bayreuther , Ahmed El Moumen , David Macieira , Martin Kerschbaum","doi":"10.1016/j.compositesa.2025.109028","DOIUrl":null,"url":null,"abstract":"<div><div>This study examined the effects of nozzle diameter and fibre pre-tension on the impregnation quality and mechanical performance of GRAM robotized wet filament-wound composites. The use of a larger nozzle improved fibre impregnation, reduced void content from 6 % to 2 %, and enhanced composite uniformity. Higher fibre pre-tension (10 N) flattened fibre tows, increasing packing density and resin distribution, which minimized voids and improved mechanical properties. In contrast, lower pre-tension (5 N) resulted in increased voids and weaker composites. Mechanical testing showed that samples produced with higher pre-tension and larger nozzles exhibited more consistent mechanical responses. Although the larger nozzle samples were ∼7 % stronger than those made with a smaller nozzle, the study highlighted the importance of optimizing fibre impregnation & compaction for achieving high-performance filament-wound composites.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"197 ","pages":"Article 109028"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25003227","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This study examined the effects of nozzle diameter and fibre pre-tension on the impregnation quality and mechanical performance of GRAM robotized wet filament-wound composites. The use of a larger nozzle improved fibre impregnation, reduced void content from 6 % to 2 %, and enhanced composite uniformity. Higher fibre pre-tension (10 N) flattened fibre tows, increasing packing density and resin distribution, which minimized voids and improved mechanical properties. In contrast, lower pre-tension (5 N) resulted in increased voids and weaker composites. Mechanical testing showed that samples produced with higher pre-tension and larger nozzles exhibited more consistent mechanical responses. Although the larger nozzle samples were ∼7 % stronger than those made with a smaller nozzle, the study highlighted the importance of optimizing fibre impregnation & compaction for achieving high-performance filament-wound composites.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.