TAS-TsC: A data-driven framework for Estimating Time of Arrival using Temporal-Attribute-Spatial Tri-space Coordination of truck trajectories

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mengran Li , Junzhou Chen , Guanying Jiang , Fuliang Li , Ronghui Zhang , Siyuan Gong , Zhihan Lv
{"title":"TAS-TsC: A data-driven framework for Estimating Time of Arrival using Temporal-Attribute-Spatial Tri-space Coordination of truck trajectories","authors":"Mengran Li ,&nbsp;Junzhou Chen ,&nbsp;Guanying Jiang ,&nbsp;Fuliang Li ,&nbsp;Ronghui Zhang ,&nbsp;Siyuan Gong ,&nbsp;Zhihan Lv","doi":"10.1016/j.asoc.2025.113214","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately estimating the time of arrival (ETA) for trucks is crucial for optimizing transportation efficiency in logistics. GPS trajectory data provides valuable information for ETA, but challenges arise due to temporal sparsity, variable sequence lengths, and the interdependencies among multiple trucks. To address these issues, we propose the Temporal-Attribute-Spatial Tri-space Coordination (TAS-TsC) framework, which leverages three feature spaces – temporal, attribute, and spatial – to enhance ETA. Our framework consists of a Temporal Learning Module (TLM) that uses state space models to capture temporal dependencies, an Attribute Extraction Module (AEM) that transforms sequential features into structured attribute embeddings, and a Spatial Fusion Module (SFM) that models the interactions among multiple trajectories using graph representation learning. These modules collaboratively learn trajectory embeddings, which are then used by a Downstream Prediction Module (DPM) to estimate arrival times. We validate TAS-TsC on real truck trajectory datasets collected from Shenzhen, China, demonstrating its superior performance compared to existing methods.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"178 ","pages":"Article 113214"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625005253","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately estimating the time of arrival (ETA) for trucks is crucial for optimizing transportation efficiency in logistics. GPS trajectory data provides valuable information for ETA, but challenges arise due to temporal sparsity, variable sequence lengths, and the interdependencies among multiple trucks. To address these issues, we propose the Temporal-Attribute-Spatial Tri-space Coordination (TAS-TsC) framework, which leverages three feature spaces – temporal, attribute, and spatial – to enhance ETA. Our framework consists of a Temporal Learning Module (TLM) that uses state space models to capture temporal dependencies, an Attribute Extraction Module (AEM) that transforms sequential features into structured attribute embeddings, and a Spatial Fusion Module (SFM) that models the interactions among multiple trajectories using graph representation learning. These modules collaboratively learn trajectory embeddings, which are then used by a Downstream Prediction Module (DPM) to estimate arrival times. We validate TAS-TsC on real truck trajectory datasets collected from Shenzhen, China, demonstrating its superior performance compared to existing methods.
基于货车轨迹时间-属性-空间三空间协调的到达时间估计的数据驱动框架
准确估计货车到达时间(ETA)对于优化物流运输效率至关重要。GPS轨迹数据为ETA提供了有价值的信息,但由于时间稀疏性、可变序列长度和多辆卡车之间的相互依赖性,挑战随之而来。为了解决这些问题,我们提出了时间-属性-空间三空间协调(TAS-TsC)框架,该框架利用时间、属性和空间三个特征空间来增强ETA。我们的框架包括一个使用状态空间模型捕获时间依赖性的时间学习模块(TLM),一个将顺序特征转换为结构化属性嵌入的属性提取模块(AEM),以及一个使用图表示学习对多个轨迹之间的相互作用建模的空间融合模块(SFM)。这些模块协同学习轨迹嵌入,然后由下游预测模块(DPM)使用轨迹嵌入来估计到达时间。我们在从中国深圳收集的真实卡车轨迹数据集上验证了TAS-TsC,与现有方法相比,证明了其优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信