Promotion of skin regeneration in diabetic rats by collagen-based hydrogel incorporated with basic fibroblast growth factor: A histological, molecular, and tensiometrical study
{"title":"Promotion of skin regeneration in diabetic rats by collagen-based hydrogel incorporated with basic fibroblast growth factor: A histological, molecular, and tensiometrical study","authors":"Melody Omraninava , Rafat Rezapour-Nasrabad , Mojgan Hosseini , Mohammad Armin Kasiri , Shadman Shahzamani , Maryam Bahrami , Zahra Sadrzadeh-aghajani , Mohamad Sedigh Mirzaie","doi":"10.1016/j.tice.2025.102983","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic wounds represent a major and costly challenge for diabetic patients, leading to significant morbidity and healthcare expenses. Consequently, extensive research has been dedicated to identifying effective treatments to enhance wound healing. Among these, biological hydrogels have emerged as promising candidates due to their superior properties over traditional materials. This study aimed to assess the efficacy of a bioactive and biodegradable collagen-based hydrogel derived from human amniotic membrane (CHA) combined with basic fibroblast growth factor (bFGF) in promoting wound healing in diabetic rats. A total of thirty diabetic rats were randomly divided into three groups (n = 10): control, CHA, and CHA incorporated with bFGF (CHA+bFGF). Wound evaluations were conducted on days 7 and 21. The findings revealed notable improvements in wound closure, fibroblast and blood vessel counts, collagen density, tensiometrical parameters, and the levels of VEGF in the treatment groups compared to the control group, with the most significant effects observed in the CHA+bFGF group. Moreover, the CHA+bFGF group demonstrated a greater reduction in inflammatory cells infiltration, along with lower concentration of TNF-α and IL-1β cytokines, compared to the other groups. In conclusion, the combination of CHA with bFGF proved to be highly effective in enhancing the healing process of diabetic wounds.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"96 ","pages":"Article 102983"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625002630","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic wounds represent a major and costly challenge for diabetic patients, leading to significant morbidity and healthcare expenses. Consequently, extensive research has been dedicated to identifying effective treatments to enhance wound healing. Among these, biological hydrogels have emerged as promising candidates due to their superior properties over traditional materials. This study aimed to assess the efficacy of a bioactive and biodegradable collagen-based hydrogel derived from human amniotic membrane (CHA) combined with basic fibroblast growth factor (bFGF) in promoting wound healing in diabetic rats. A total of thirty diabetic rats were randomly divided into three groups (n = 10): control, CHA, and CHA incorporated with bFGF (CHA+bFGF). Wound evaluations were conducted on days 7 and 21. The findings revealed notable improvements in wound closure, fibroblast and blood vessel counts, collagen density, tensiometrical parameters, and the levels of VEGF in the treatment groups compared to the control group, with the most significant effects observed in the CHA+bFGF group. Moreover, the CHA+bFGF group demonstrated a greater reduction in inflammatory cells infiltration, along with lower concentration of TNF-α and IL-1β cytokines, compared to the other groups. In conclusion, the combination of CHA with bFGF proved to be highly effective in enhancing the healing process of diabetic wounds.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.