Porous silica materials with different pore structures as hemostatic dressing for acute blood loss

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Yuhang Huang , Pingwei Yang , Shaokai Sun , Liyun Mao , Yunyun Zhou , Ying Liu , Juanjuan Peng , Lingzhi Zhao
{"title":"Porous silica materials with different pore structures as hemostatic dressing for acute blood loss","authors":"Yuhang Huang ,&nbsp;Pingwei Yang ,&nbsp;Shaokai Sun ,&nbsp;Liyun Mao ,&nbsp;Yunyun Zhou ,&nbsp;Ying Liu ,&nbsp;Juanjuan Peng ,&nbsp;Lingzhi Zhao","doi":"10.1016/j.micromeso.2025.113698","DOIUrl":null,"url":null,"abstract":"<div><div>Porous silica materials can serve as hemostats, offering a promising approach to promote the coagulation speed. The pore structure of porous silica is a critical property, which may influence the hemostatic effectiveness, though its exact role in the hemostasis process remains unclear. Given that the key structural parameters of porous silica, including pore size, surface area, and pore volume, exhibited strong interrelationships that significantly influence each other, we prepared porous silica with pore sizes ranging from 2.5 to 50 nm to study their hemostatic effects by both in vitro and in vivo assessments. The results demonstrated that the mesoporous material MCM-41 with small pore size (2.5 nm) and high specific surface area exhibited superior contact activation capability to the coagulation pathway. In contrast, the macroporous siliceous foam (MSF) with large pore size (50 nm) and large pore volume showed enhanced absorption of blood cells and proteins. The mesoporous SBA-15 with pore size of 5.3 nm displayed intermediate properties between the two materials. The in vivo experiments showed that among the three kinds of porous silica, the MCM-41 provided the highest pro-coagulant capacity in the tail transection rat model with minor bleeding, and the MSF performed the best hemostatic effect in the femoral artery injury rat model with spurting hemorrhage. Our study elucidates the role of pore structure of porous silica as hemostats, which may give hint to the design of such materials.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"395 ","pages":"Article 113698"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125002124","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Porous silica materials can serve as hemostats, offering a promising approach to promote the coagulation speed. The pore structure of porous silica is a critical property, which may influence the hemostatic effectiveness, though its exact role in the hemostasis process remains unclear. Given that the key structural parameters of porous silica, including pore size, surface area, and pore volume, exhibited strong interrelationships that significantly influence each other, we prepared porous silica with pore sizes ranging from 2.5 to 50 nm to study their hemostatic effects by both in vitro and in vivo assessments. The results demonstrated that the mesoporous material MCM-41 with small pore size (2.5 nm) and high specific surface area exhibited superior contact activation capability to the coagulation pathway. In contrast, the macroporous siliceous foam (MSF) with large pore size (50 nm) and large pore volume showed enhanced absorption of blood cells and proteins. The mesoporous SBA-15 with pore size of 5.3 nm displayed intermediate properties between the two materials. The in vivo experiments showed that among the three kinds of porous silica, the MCM-41 provided the highest pro-coagulant capacity in the tail transection rat model with minor bleeding, and the MSF performed the best hemostatic effect in the femoral artery injury rat model with spurting hemorrhage. Our study elucidates the role of pore structure of porous silica as hemostats, which may give hint to the design of such materials.
不同孔结构的多孔二氧化硅材料作为急性失血止血敷料
多孔二氧化硅材料可以作为止血剂,为提高凝血速度提供了一种很有前途的方法。多孔二氧化硅的孔隙结构是影响止血效果的关键特性,但其在止血过程中的确切作用尚不清楚。考虑到多孔二氧化硅的关键结构参数,包括孔径、表面积和孔体积,表现出很强的相互关系,并且相互影响显著,我们制备了孔径在2.5 ~ 50 nm之间的多孔二氧化硅,通过体外和体内评估来研究其止血作用。结果表明,小孔径(2.5 nm)、高比表面积的介孔材料MCM-41对混凝途径具有优越的接触活化能力。相比之下,大孔径(50 nm)和大孔容的大孔硅质泡沫(MSF)对血细胞和蛋白质的吸收增强。孔径为5.3 nm的介孔SBA-15表现出介于两种材料之间的中间性质。体内实验表明,在三种多孔二氧化硅中,MCM-41对小出血尾断大鼠模型的促凝能力最高,MSF对喷射性出血股动脉损伤大鼠模型的止血效果最好。我们的研究阐明了多孔二氧化硅的孔隙结构作为止血剂的作用,这可能为此类材料的设计提供线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信